
кР531**кП**15

Микросхема представляет собой восьмивходовый селектормультиплексор с тремя устойчивыми состояниями. Содержит 209 интегральных элементов. Корпус типа 206.16-12, масса не более 1,4 г.

Условное графическое обозначение КР531КП15

Назначение выводов: 1 - вход информационный X4; 2 - вход информационный X3; 3 - вход информационный X2; 4 - вход информационный X1; 5 - выход прямой Y1; 6 - выход инверсный $\overline{Y2}$; 7 - вход установки высокоимпедансного состояния на выходе \overline{Z} ; 8 - общий; 9 - вход кодирующий V3; 10 - вход кодирующий V2; 11 - вход кодирующий V1; 12 - вход информационный X8; 13 - вход информационный X7; 14 - вход информационный X6; 15 - вход информационный X5; 16 - напряжение питания.

Электрические параметры

Номинальное напряжение питания	5 B ± 5%
Выходное напряжение высокого уровня	. ≥ 2,4 B
Выходное напряжение низкого уровня	. ≤ 0,5 B
Ток потребления	≤ 85 MA
Входной ток низкого уровня	. ≤ I -2 MA
Входной ток высокого уровня	. ≤ 50 MKA
Входной ток низкого уровня в состоянии высокого импеданса	. ≤ -50 мкA
Входной ток высокого уровня в состоянии высокого импеданса	. ≤ 50 mkA
Время задержки распространения при включении по выводам:	
- от 9, 10, 11 до 5	. ≤ 19,5 нс
- от 9, 10, 11 до 6	. ≤ 13,5 нс
- от 1, 2, 3, 4, 12, 13, 14, 15 до 5	. ≤ 12 HC

- от 1, 2, 3, 4, 12, 13, 14, 15 до 6 ≤ Время задержки распространения при выключении по выводам:	7 нс
- от 9, 10, 11 до 5 ≤	18 нс
- от 9, 10, 11 до 6 ≤	15 нс
- от 1, 2, 3, 4, 12, 13, 14, 15 до 5 ≤	12 нс
- от 1, 2, 3, 4, 12, 13, 14, 15 до 6 ≤	
Время задержки распространения при переходе из третьего	
состояния в состояние высокого уровня ≤	19,5 нс
Время задержки распространения при переходе в третье	
состояние из состояния высокого уровня ≤	9,2 нс
Время задержки распространения при переходе из третьего	
состояния в состояние низкого уровня ≤	21 нс
Время задержки распространения при переходе в третье	
состояние из состояния низкого уровня≤	14,7 нс
Предельно допустимые режимы эксплуатации	
Максимальное входное напряжение низкого уровня	,5 B
Минимальное входное напряжение высокого уровня	,4 B
Максимальный выходной ток низкого уровня	0 мА
Максимальный выходной ток высокого уровня -	
Максимальная длительность фронта (среза) импульса	
Максимальная емкость нагрузки	
Температура окружающей среды1	