X-Powers

AXP288

<u>Datasheet</u>

PMIC Optimized For Multi-Core High-Performance System

Revision 1.07

2014.6.24

Revision History

Revision	Date	Description
Rev 1.0	2013.12.10	Version1.0 for Intel
Rev 1.01	2013.12.16	1. Table9-3, T0 change to 1000μs
		2. Update table 9-41 and related register
		3. Update table 9-43, add 4.35V OCV~percentage
Rev 1.02	2013.12.18	Add Pb free description
Rev 1.03	2013.12.20	1. Change the SCK/SDA pull high voltage to 1.8V in typical application
		circuit
Rev 1.04	2014.1.24	Add power on interval description
		2. Update table 10-92, change default value
		3. Update table 10-77, remove bit[7] description
		4. Change the capacitance of VCC_RTC to 10uF in typical application
		circuit
		5. Update table 10-74, remove bit[1:0] description
		6. Update table 10-36, remove bit[2] description
		7. Update table 10-32, add bit[6] description
		8. Swap IRQ description in REG 43H/44H/4BH/4CH
		9. Update table 10-89, remove bit[1:0] description
		10. Add VBAT condition in power on source
		11. Correct table 10-50 description
	Y	12. Update table 10-32, add bit[6] description
		13. Update the hysteresis of temperature protection threshold
		14. Update table 10-9, change bit[3] description
		15. Update table 10-4, describe how to clear the indication
Rev 1.05	2014.2.13	Update QFN76 package description
		2. Add QFN76 board layout example
		3. Update table 10-106, correct bit[2:0] description
		4. Correct OCV Percentage Table description
Rev 1.06	2014.5.23	1. Version change: Reg03H: 0x41 to 0x51
		2. Reg14[3] default value change to 1
		3. Use Reg14[7] as an enable bit for cold reset within global reset input
		4. When BC module isn't work, disable RID detection by default
		5. Update section 9.1 / 9.1.1 / 9.4 / 9.4.2 / 9.4.5
		6. Update RTC_LDO output capacitor's value
		7. Update Reg80 bit[7], bit[3],bit[1] description

8. Correct Reg3BH Bit[4],bit[3-0] description
9. Update the max charge current to 2.8A
10. Update electrical characteristics description
11. Correct Reg25H Reg26H default value to A8
12. Add table-1 for part number description
13. Add Package materials information Figure 11-3
14. Add RegA0H RegA1H real time value of battery voltage description
15. Update Reg80H bit[7] description
16. Update RegB8H bit[3] description
17. Add order information and table 11
18. Correct table 9-29 description
19. Correct Reg01H bit[4] description
20. Correct Reg59H, 5BH, 79H, 7BH, 7DH description
1. Add AXP288D description

Declaration

X-Powers cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an X-Powers product. No circuit patent licenses, copyrights, or other intellectual property rights are implied. X-Powers reserves the right to make changes to the specifications and products at any time without notice.

Catalog

1	Overview	
	Feature	
	Typical Application	
	Pin Map	
	·	
5	Pin Description	9
	Block Diagram	
	Absolute Maximum Ratings	
	Electrical Characteristics	
9	Control and operation	21
10	Register	55
11	Package	101

1 Overview

AXP288 is customized PMIC for Intel Bay trail (BYT-CR) and Cherry trail (CHT-CR) platforms.

AXP288 is a highly integrated PMIC targeting at Li-battery (Li-ion or Li-polymer) applications that require multi-channel power conversion outputs. It provides an easy and flexible power management solution for processors to meet the increasingly complex and accurate requirements on power control.

AXP288 comes with an adaptive USB3.0-compatible Flash Charger that supports up to 2.8A charge current. It also supports 20 channels power outputs (including 6-CH Bucks). To ensure the security and stability of the power system, AXP288 provides multiple channels 12-bit ADC for voltage/current/temperature monitor and integrates protection circuits such as OVP, UVP, OTP, and OCP. Moreover, AXP288 features a unique E-GaugeTM (Fuel Gauge) system, making power gauge easy and exact.

In addition, AXP288 embraces a fast interface for the system to dynamically adjust output voltage and enable power outputs so that the battery life can be extended to the largest extent.

Besides, AXP288 features an IPS™ (Intelligent Power Select) circuit to transparently select power path among USB and Li-battery to system load.

AXP288 is available in 9mm x 9mm 76-pin QFN package, and the package is Pb free.

Applications:

- Tablet, Smart phone, DVR, Desktop, Dongle
- UMPC-like, Student Computer

Supported processers and corresponding part numbers:

Table 1

Compatible Processor	Application	Part Number
Bay Trail CR	Tablet	AXP288
Bay Trail CR	Desktop, Dongle	AXP288D
Cherry Trail CR	Tablet	AXP288C

2 Feature

- -- 6 Frequency spread Bucks
 - ◆ BUCK1: PFM/PWM, 0.5-1.20V, 10mV/step, 1.22-1.30V, 20mV/step, IMAX=3A, DVM
 - ◆ BUCK2: PFM/PWM, 0.6-1.10V, 10mV/step, 1.12-1.52V, 20mV/step, IMAX=1.8A, DVM
 - ◆ BUCK3: PFM/PWM, 0.6-1.10V, 10mV/step, 1.12-1.52V, 20mV/step, IMAX=2.5A, DVM
 - ◆ BUCK4: PFM/PWM, 0.8-1.12V, 10mV/step, 1.14-1.84V, 20mV/step, IMAX=2.5A, DVM, default set by BUCK4SET
 - ◆ BUCK5: PFM/PWM, 0.5-1.20V, 10mV/step, 1.22-1.30V, 20mV/step, IMAX=6A, DVM, Dual-Phase
 - ◆ BUCK6: PFM/PWM, 1.6-3.4V, 0.1V/step, 19 steps, IMAX=1.5A
 - ◆ BUCK1/5:71+5 steps; BUCK2/3:51+21steps; BUCK4:33+37 steps
 - ◆ DVM(Dynamic Voltage scaling Management) ramp rate: 2.5mV/us at buck frequency 3MHz

--15 LDOs & Switch

- ◆ RTCLDO: VCC RTC=3V, IMAX=60mA, always enable
- ALDO1: Analog LDO, 0.7-3.3V, 100mV/step, 27 steps, IMAX=500mA, input is ALDOIN
- ◆ ALDO2: Analog LDO, 0.7-3.3V, 100mV/step, 27 steps, IMAX=300mA, input is ALDOIN
- ◆ ALDO3: Analog LDO, 0.7-3.3V, 100mV/step, 27 steps, IMAX=200mA, input is ALDOIN
- ◆ DLDO1: Analog LDO, 0.7-3.3V, 100mV/step, 27 steps; IMAX=500mA, input is DLDOIN
- ◆ DLDO2: Analog LDO, 0.7-3.4V, 100mV/step; 28 steps; 3.4-4.2V, 200mV/step, 4 steps. IMAX=400mA, input is DLDOIN
- ◆ DLDO3: Analog LDO, 0.7-3.3V, 100mV/step; 27 steps, IMAX=300mA, input is DLDOIN
- ◆ DLDO4: Analog LDO, 0.7-3.3V, 100mV/step; 27 steps, IMAX=500mA, input is DLDOIN
- ◆ ELDO1: Digital LDO, 0.7-1.9V, 50mV/step; 25 steps, IMAX=400mA, input is ELDOIN
- ◆ ELDO2: Digital LDO, 0.7-1.9V, 50mV/step; 25 steps, IMAX=200mA, input is ELDOIN
- ◆ ELDO3: Digital LDO, 0.7-1.9V, 50mV/step; 25 steps, IMAX=200mA, input is ELDOIN
- ◆ FLDO1: Digital LDO, 0.7-1.45V, 50mV/step, 16 steps, IMAX=300mA, input is FLDOIN
- ◆ FLDO2: Digital LDO, 0.7-1.45V, 50mV/step, 16 steps, IMAX=100mA, input is FLDOIN
- ◆ FLDO3: Sink and Source LDO, FLDOIN/2, BUCK4/2, IMAX=30mA, input is FLDOIN, for VREFDQ, default on
- ◆ GPIO0LDO: Analog LDO, 0.7-3.3V, 100mV/step, 27 steps, IMAX=100mA, input is ALDOIN
- ◆ GPIO1LDO: Analog LDO, 0.7-3.3V, 100mV/step, 27 steps, IMAX=150mA, input is ALDOIN
- ◆ CHGLED: GND switch for motor or LED, IMAX=100mA
- --Two wire serial interface (SCK/SDA) supporting standard and quick slave mode
- --Intelligent Power Select (IPS), VBUS-IPSOUT is 80mΩ typically
- --Adaptive Li battery PWM charger with current total up to 2.8A
- --Battery Fuel Gauge and coulomb counter
- --Power output on/off touch key
- --Internal Temperature sensor and protection
- --Safe and Soft start up

3 Typical Application

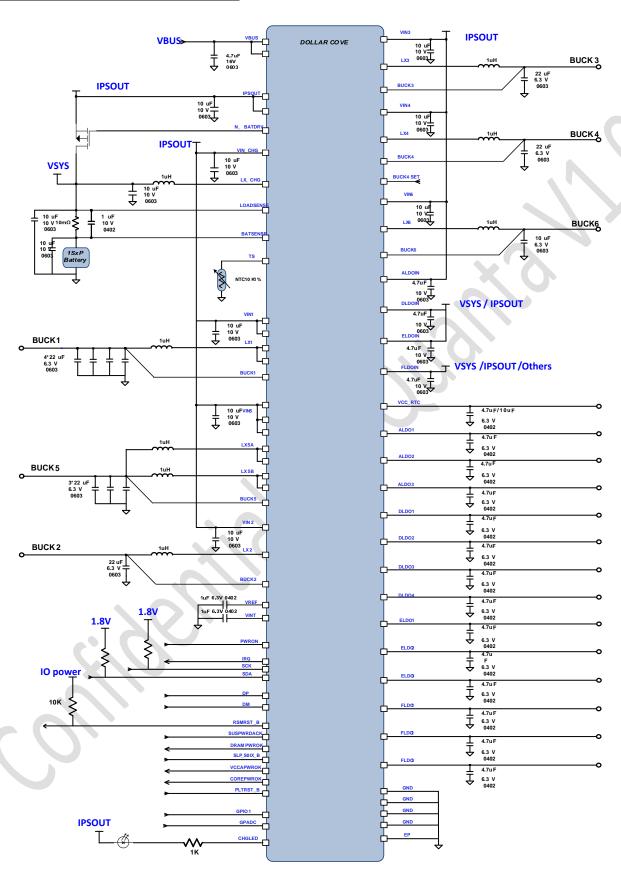


Figure 3-1

4 Pin Map

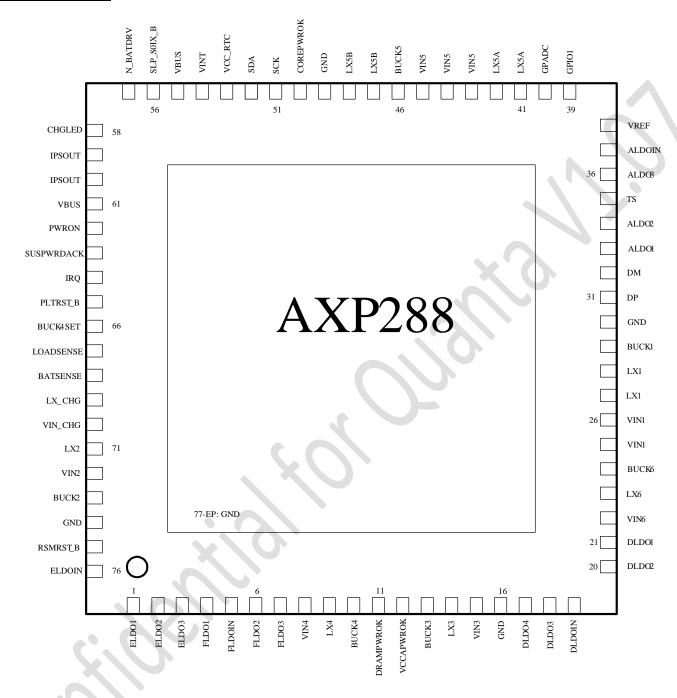


Figure 4-1

5 Pin Description

Table 5-1

N um	Name	Туре	Condition	Description
1	ELDO1	0		Output pin of ELDO1
2	ELDO2	0		Output pin of ELDO2
3	ELDO3	0		Output pin of ELDO3
4	FLDO1	0		Output Pin of FLDO1
5	FLDOIN	PI		FLDO input source
6	FLDO2	0		Output Pin of FLDO2
7	FLDO3	0		Output Pin of FLDO3
8	VIN4	PI		BUCK4 input source
9	LX4	Ю		Inductor Pin for BUCK4
10	BUCK4	1		BUCK4 feedback pin
				Power good pin, push-pull output, and pull to $V_{\text{\tiny BUCK4}}$ internal.
11	DRAMPWROK	0		DRAMPWROK is an active high dedicated output signal.
11	DRAINF WROK	O		DRAMPWROK asserts when voltage rails V_{BUCK4} is within 15% of
				its nominal voltage
				Power Good pin, push-pull output, and pull to V_{BUCK4} internal.
12	VCCAPWROK	0	((VCCAPWROK asserts when all voltage rails to the SOC that are
12	VCCAFWNOK	O	, X/	supposed to be on in SO and SOIX states are within 15% of its
				nominal voltage
13	BUCK3	I		BUCK3 feedback pin
14	LX3	10		Inductor Pin for BUCK3
15	VIN3	PI		BUCK3 input source
16	GND	G		GND for internal analog circuit
17	DLDO4	0		Output Pin of DLDO4
18	DLDO3	0		Output Pin of DLDO3
19	DLDOIN	PI		DLDOIN input source
20	DLDO2	0		Output Pin of DLDO2
21	DLDO1	0		Output Pin of DLDO1
22	VIN6	PI		BUCK6 input source
23	LX6	10		Inductor Pin for BUCK6
24	BUCK6	Ţ		BUCK6 feedback pin
25	VIN1	PI		BUCK1 input source
26	VIN1	PI		BUCK1 input source
27	LX1	10		Inductor Pin for BUCK1

N um	Name	Туре	Condition	Description
28	LX1	10		Inductor Pin for BUCK1
29	BUCK1	I		BUCK1 feedback pin
30	GND	G		GND for internal analog circuit
31	DP	I		Charger detection, USB D+
32	DM	I		Charger detection, USB D-
33	ALDO1	0		Output pin of ALDO1
34	ALDO2	0		Output pin of ALDO2
35	TS	I		Battery Temperature Sensor Input or an External ADC Input
36	ALDO3	0		Output pin of ALDO3
37	ALDOIN	PI		ALDO input source
38	VREF	0		Internal reference voltage
39	GPIO1	10		General purpose I/O or LDO by REG92H. When it's digital input, the logic high level is 1.5V, and the logic low level is 0.5V typically. When it's digital output, the logic high level is decided by REG93H.
40	GPADC	I		General purpose I/O/ADC input or LDO by REG90H. When it's digital input, the logic high level is 1.5V, and the logic low level is 0.5V typically. When it's digital output, the logic high level is decided by REG91H.
41	LX5A	10		Inductor Pin for BUCK5 phase A
42	LX5A	10		Inductor Pin for BUCK5 phase A
43	VIN5	PI		BUCK5 input source
44	VIN5	PI		BUCK5 input source
45	VIN5	PI		BUCK5 input source
46	BUCK5			BUCK5 feedback pin
47	LX5B	10		Inductor Pin for BUCK5 phase B
48	LX5B	10		Inductor Pin for BUCK5 phase B
49	GND	G		GND for internal analog circuit
50	COREPWROK	0		Power Good pin, push-pull output, and pull to VCC_RTC internal. COREPWROK is an active high dedicated output signal. COREPWROK asserts when all voltage rails to the SOC that are supposed to be on in SO and SOIX states are within 15% of its nominal voltage
51	SCK	I	2.2KΩ Pull High	Clock pin for serial interface, need a 2.2KΩ Pull High.
52	SDA	10	2.2KΩ Pull High	Data pin for serial interface, need a 2.2KΩ Pull High.

N um	Name	Туре	Condition	Description
53	VCC_RTC	0		Output pin of VCC_RTC
54	VINT	PO		Internal logic power, 1.8V
55	VBUS	PI		VBUS input, must tied to pin 61
				SOC sleep signal, SLP_SOIX_B is an active low dedicated input
				signal from the SOC that indicates SOIX state entry upon
56	SLP_S0IX_B	I		assertion (SLP_S0IX=LOW) and exit upon de-assertion
				(SLP_S0IX_B=HIGH). Typically, the logic high level is 1.5V, and
				the logic low level is 0.5V.
57	N_BATDRV	0		BAT to PS extern PMOS driver
58	CHGLED	0		Charger status indication
59	IPSOUT	PO		System power source
60	IPSOUT	PO		System power source
61	VBUS	PI		VBUS input, must tied to pin 55
62	PWRON	I		Power On-Off key input, Internal 100k pull high to VINT pin
				Power down signal, SUSPWRDACK is an active high dedicated
63	63 SUSPWRDACK			input signal from the SOC that tells the PMIC to turn off all rails
05				but RTC. Typically, the logic high level is 1.5V, and the logic low
				level is 0.5V.
64	IRQ	О	10ΚΩ	Interrupt output, open drain output, need a 10KΩ Pull High
			Pull High	
65	PLTRST_B			Reset signal from SOC to PMIC. Typically, the logic high level is
	- <u>-</u>			1.5V, and the logic low level is 0.5V.
66	BUCK4SET	1		Setting BUCK4 default Output Voltage, this pin must tied to
				GND/VINT or floating.
67	LOADSENSE	1		PWM Charger Current Sense Resistance Positive Input
68	BATSENSE	1		PWM Charger Current Sense Resistance Negative Input
69	LX_CHG	10		Inductor Pin for PWM Charger
70	VIN_CHG	l		Charger input source
71	LX2	10		Inductor Pin for BUCK2
72	VIN2	PI		BUCK2 input source
73	BUCK2	I		Feedback to BUCK2
74	GND	G		GND for internal analog circuit
			10ΚΩ	Power good pin, open drain output, need a 10KΩ Pull High.
75	RSMRST_B	0	Pull High	Resume reset output to SOC, de-asserted (=1) after ALDO3 is
				within 15% nominal voltage
76	ELDOIN	PI		ELDO input source
77	EP	G		Exposed pad, connected to system ground

6 Block Diagram

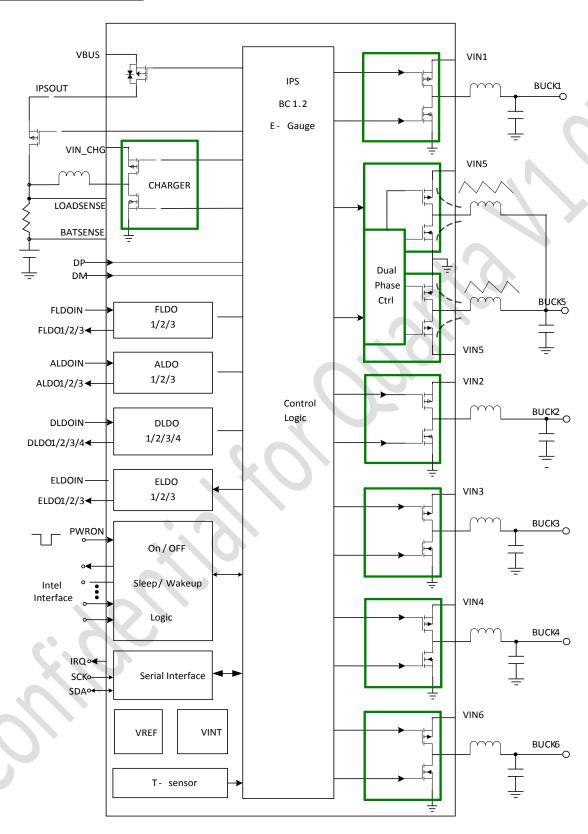


Figure 6-1

7 Absolute Maximum Ratings

Table 7-1

SYMBOL	DESCRIPTION	VALUE	UNITS
VBUS	Input Voltage Range	-0.3 to 11	V
V _{RIO1}	Voltage Range on pins RSMRST_B, SUSPWRDACK, IRQ, PLTRST_B, COREPWROK	-0.3 to 5.5	V
V_{RIO2}	Voltage Range on pins SCK, SDA, GPADC, GPIO1, SLP_SOIX_B	-0.3 to IPSOUT+0.3	V
V_{RIO3}	Voltage Range on pins DRAMPWROK, VCCAPWROK	-0.3 to V _{BUCK4} +0.3	
V _{RIO3}	Voltage Range on pin PWRON	-0.3 to 2.1	V
Tj	Operating Junction Temperature Range	125	$^{\circ}$ C
T _A	Operating Temperature Range	-20 to 85	$^{\circ}$ C
Ts	Storage Temperature Range	-40 to 150	°C
T _{LEAD}	Maximum Soldering Temperature (at leads, 10sec)	260	$^{\circ}$
V _{ESD}	Maximum ESD stress voltage,Human Body Model	>2000	V
P _D	Internal Power Dissipation	2700	mW

8 Electrical Characteristics

Table 8-1

SYMBOL	DESCRIPTION	CONDITIONS	MIN	ТҮР	MAX	UNITS
VBUS						
V _{IN}	VBUS Input Voltage		3.5		7	V
I _{OUT}	V_{OUT} Current Available Before Loading BAT		100	500	4000	mA
V _{UVLO}	VBUS Under Voltage Lockout			3.5		V
V _{OUT}	IPSOUT Output Voltage		2.9		5.0	V
R _{VBUS}	Internal Ideal Diode On Resistance	VBUS to IPSOUT		80		mΩ
Battery Cha	rger		X (
V _{TRGT}	BAT Charge Target Voltage		4.1	4.2	4.35	V
I _{CHRG}	Charge Current		200	1200	2800	mA
I _{TRKL}	Trickle Charge Current Ratio to I _{CHRG}	.10		10%		mA
V _{TRKL}	Trickle Charge Threshold Voltage			3.0		V
ΔV_{RECHG}	Recharge Battery Threshold Voltage	Threshold Voltage Relative to V _{TARGET}		-100		mV
T _{TIMER1}	Charger Safety Timer Termination Time	Trickle Mode	40	50	70	min
T _{TIMER2}	Charger Safety Timer Termination Time	CC Mode	360	480	720	min
I _{END}	End of Charge Indication Current Ratio to I _{CHRG}	CV Mode	10%	10%	20%	mA
I _{TOLER}	The tolerance of charge current	I _{CHRG} = 0.2A - 2.8A	±3%	±5%	±10%	mA
V_{TOLER}	The tolerance of charge target voltage				±0.5%	V
NTC	. 200	L				
$V_{LTF-work}$	Cold Temperature Fault Threshold Voltage For Battery Work		0	3.226	3.264	V
V _{HTF-work}	Hot Temperature Fault Threshold Voltage For Battery Work		0	0.282	3.264	V
V _{LTF-charge}	Cold Temperature Fault Threshold Voltage For Battery Charge		0	2.112	3.264	V
$V_{HTF-charge}$	Hot Temperature Fault Threshold Voltage For Battery Charge		0	0.397	3.264	٧
Off Mode Cu	urrent				•	

	1	Tiviic Optimized for ivi		<u> </u>		
I _{BATOFF}	OFF Mode Current	BAT=3.7V		40		μΑ
BUCK						
f_{OSC}	Oscillator Frequency	Default		3		MHz
L	Inductor value			1.0		μН
BUCK1			•			
1	Input Current	PFM Mode		40		
I _{VIN1}	Input Current	I _{BUCK1} =0		40		μА
	Switch Current Limit of PMOS	PWM Mode		3900		mA
I _{BUCK1}	Available Output Current	PWM Mode		3000		mA
V _{BUCK1}	Output Voltage		0.5	1	1.3	V
C _{OUT1}	Output capacitor value		22	4*22	110	μF
BUCK2			Y 7			
	Level Consent	PFM Mode		40		
I _{VIN2}	Input Current	I _{BUCK2} =0		40		μΑ
	Switch Current Limit of PMOS	PWM Mode		2300		mA
I _{BUCK2}	Available Output Current	PWM Mode		1800		mA
V _{BUCK2}	Output Voltage		0.6	1	1.52	V
C _{OUT2}	Output capacitor value	3	22	22	66	μF
виск3				•		
	Invest Comment	PFM Mode		40		
I _{VIN3}	Input Current	I _{BUCK3} =0		40		μΑ
	Switch Current Limit of PMOS	PWM Mode		3000		mA
I _{BUCK3}	Available Output Current	PWM Mode		2500		mA
V _{BUCK3}	Output Voltage		0.6	1	1.52	V
C _{OUT3}	Output capacitor value		22	22	66	μF
BUCK4			1	l	ı	1
	()	PFM Mode		40		
I _{VIN4}	Input Current	I _{BUCK4} =0		40		μΑ
	Switch Current Limit of PMOS	PWM Mode		3000		mA
I _{BUCK4}	Available Output Current	PWM Mode		2500		mA
V _{BUCK4}	Output Voltage		0.8	1.5	1.84	V
C _{OUT4}	Output capacitor value		22	22	66	μF
BUCK5 (Dua	l Phase)	1	-1	ı	<u>I</u>	1
	1	PFM Mode				
I _{VIN5}	Input Current	I _{BUCK5} =0		50		μΑ
	Switch Current Limit Per PMOS	PWM Mode		3900		mA

		оришески гол ни		· · · · · · · · · · · ·	,	-,
I _{BUCK5}	Available Output Current	PWM Mode		6000		mA
V _{BUCK5}	Output Voltage		0.5	1	1.3	V
C _{OUT5}	Output capacitor value		44	3*22	132	μF
виск6		•				
L	Input Current	PFM Mode		40		μА
I _{VIN6}	input current	I _{BUCK6} =0		40		μА
	Switch Current Limit of PMOS	PWM Mode		2000		mA
I _{BUCK6}	Available Output Current	PWM Mode		1500		mA
V_{BUCK6}	Output Voltage		1.6	1.8	3.4	V
• воскь	(3.3V for AXP288D)		1.0	1.0	3.1	•
C _{OUT6}	Output capacitor value		22	22	66	μF
RTCLDO (al	ways on)					
V_{RTCLDO}	Output Voltage	I _{RTCLDO} =1mA		3		V
I _{RTCLDO}	Output Current			60		mA
ALDO1						
V _{ALDO1}	Output Voltage	I _{ALDO1} =1mA	0.7	1.2	3.3	V
I _{ALDO1}	Output Current			500		mA
IQ	Quiescent Current	3		60		μΑ
PSRR	Power Supply Rejection Ratio	V _{ALDO1} =3V,f=1kHz		70		dB
e _N	Output Noise,20Hz-80KHz	V _{ALDO1} =1.8V,I _{ALDO1} =10mA		40		μVRMS
ALDO2						
V _{ALDO2}	Output Voltage	I _{ALDO2} =1mA	0.7		3.3	V
I _{ALDO2}	Output Current			300		mA
IQ	Quiescent Current			60		μΑ
PSRR	Power Supply Rejection Ratio	V _{ALDO2} =3V, f=1kHz		70		dB
e _N	Output Noise,20Hz-80KHz	V _{ALDO2} =1.8V,I _{ALDO2} =10mA		40		μVRMS
ALDO3	CIO					
V _{ALDO3}	Output Voltage	I _{ALDO1} =1mA	0.7	3.3	3.3	V
I _{ALDO3}	Output Current			200		mA
IQ	Quiescent Current			60		μΑ
PSRR	Power Supply Rejection Ratio	V _{ALDO3} =3V, f=1kHz		70		dB
e _N	Output Noise,20Hz-80KHz	V _{ALDO3} =1.8V,I _{ALDO3} =10mA		40		μVRMS
DLDO1	1		ı	1	1	<u> </u>
V _{DLDO1}	Output Voltage	I _{DLDO1} =1mA	0.7		3.3	V
I _{DLDO1}	Output Current			500		mA

		•			,	
IQ	Quiescent Current			60		μΑ
PSRR	Power Supply Rejection Ratio	V _{DLDO1} =3V, f=1kHz		70		dB
e_N	Output Noise,20Hz-80KHz	V _{DLDO1} =1.8V,I _{DLDO1} =10mA		40		μVRMS
DLDO2						
V_{DLDO2}	Output Voltage	I _{DLDO2} =1mA	0.7		4.2	V
I _{DLDO2}	Output Current			400		mA
IQ	Quiescent Current			60		μΑ
PSRR	Power Supply Rejection Ratio	V _{DLDO2} =3V, f=1kHz		70		dB
e _N	Output Noise,20Hz-80KHz	V _{DLDO2} =1.8V,I _{DLDO2} =10mA		40		μVRMS
DLDO3	·					
V _{DLDO3}	Output Voltage	I _{DLDO3} =1mA	0.7		3.3	V
I _{DLDO3}	Output Current		x (300		mA
IQ	Quiescent Current			60		μΑ
PSRR	Power Supply Rejection Ratio	V _{DLDO3} =3V, f=1kHz		70		dB
e _N	Output Noise,20Hz-80KHz	V _{DLDO3} =1.8V,I _{DLDO3} =10mA		40		μVRMS
DLDO4	<u> </u>		•			
V_{DLDO4}	Output Voltage	I _{DLDO4} =1mA	0.7		3.3	V
I _{DLDO4}	Output Current			500		mA
ΙQ	Quiescent Current			60		μΑ
PSRR	Power Supply Rejection Ratio	V _{DLDO4} =3V, f=1kHz		70		dB
e _N	Output Noise,20Hz-80KHz	V _{DLDO4} =1.8V,I _{DLDO4} =10mA		40		μVRMS
ELDO1						
V _{ELDO1}	Output Voltage (1.8V for AXP288D)	I _{ELDO1} =1mA	0.7		1.9	V
I _{ELDO1}	Output Current			400		mA
IQ	Quiescent Current			35		μΑ
PSRR	Power Supply Rejection Ratio	V _{ELDO1} =1.2V, f=1kHz		65		dB
ELDO2		,	1	l	<u> </u>	
V _{ELDO2}	Output Voltage	I _{ELDO2} =1mA	0.7		1.9	V
I _{ELDO2}	Output Current			200		mA
IQ	Quiescent Current			35		μΑ
PSRR	Power Supply Rejection Ratio	V _{ELDO2} =1.2V, f=1kHz		65		dB
ELDO3	•	<u>'</u>				
V _{ELDO3}	Output Voltage	I _{ELDO3} =1mA	0.7		1.9	V
I _{ELDO3}	Output Current			200		mA

		Tiviic Optimized For i		g o.	, 01111411166	-,
IQ	Quiescent Current			35		μΑ
PSRR	Power Supply Rejection Ratio	V _{ELDO3} =1.2V, f=1kHz		65		dB
FLDO1						
V _{FLDO1}	Output Voltage	I _{FLDO1} =1mA	0.7	1.2	1.45	V
I _{FLDO1}	Output Current			300		mA
IQ	Quiescent Current			35		μА
PSRR	Power Supply Rejection Ratio	V _{FLDO1} =1.2V, f=1kHz		65		dB
FLDO2		·		A		
V _{FLDO2}	Output Voltage	I _{FLDO2} =1mA	0.7	1.2	1.45	V
I _{FLDO2}	Output Current			100		mA
IQ	Quiescent Current			35		μА
PSRR	Power Supply Rejection Ratio	V _{FLDO2} =1.2V, f=1kHz	'x' (65		dB
FLDO3						
			0.5	*V _{BUCK4} (de	fault)	
V_{FLDO3}	Output Voltage	I _{FLDO3} =1mA		Or		V
				0.5*V _{FLDOI}	N	
I _{FLDO3}	Output Current			30		mA
IQ	Quiescent Current			35		μΑ
GPADC				_		
$V_{GPIOOLDO}$	Output Voltage	REG90H[2:0]=011,	0.7		3.3	V
GPIOULDO	Gutput Voltage	I _{GPIO0LDO} =1mA	0.7		3.3	•
I _{GPIO0LDO}	Output Current	REG90H[2:0]=011		100		mA
IQ	Quiescent Current	REG90H[2:0]=011		35		μΑ
PSRR	Power Supply Rejection Ratio	REG90H[2:0]=011		65		dB
	The state of the s	V _{GPADC} =3V, f=1kHz				
GPIO1	20			1	T	
$V_{GPIO1LDO}$	Output Voltage	REG92H[2:0]=011,	0.7		3.3	V
_		I _{GPIO1LDO} =1mA				
I _{GPIO1LDO}	Output Current	REG92H[2:0]=011		150		mA
IQ	Quiescent Current	REG92H[2:0]=011		35		μА
PSRR	Power Supply Rejection Ratio	REG92H[2:0]=011		65		dB
0110155		V _{GPIO1} =3V, f=1kHz				
CHGLED	11. 11. 15. 11	6 1 1 1 1 1 2 2 2 2 2				
R _{CHGLED}	Internal Ideal Resistance	Supply Voltage is 0.3V		2		Ω
TWSI	1					
V _{CC}	Input Supply Voltage		1.8	3.3		V

						<u>- </u>
TWSI Slave Address (7 bits))			0x34		
Clock Operating Frequency	/			400		kHz
SCK/SDA Logic Low Voltage	9				0.3*V _{cc}	V
SCK/SDA Logic Low Voltage	9	SDA is Open drain pin	0.7*V _{CC}			V
Clock Data Fall Time		2.2Kohm Pull High		60		ns
Clock Data Rise Time		2.2Kohm Pull High		100		ns
Internal power supply for I	ogic circuit			1.8		V
PWRON						
Internal resister to VINT			50	100		ΚΩ
Logic Low Voltage				0.5		V
Logic High Voltage			× C	1.3	2.1	V
IRQ	1				<u> </u>	
Logic Low Voltage	IRQ is open	IRQ is open drain output pin, pull up to			0.3	٧
Logic High Voltage	IO power (V	IO power (V_{10}) by 10KΩ			V _{IO}	V
RSMRST_B	1			l	l	
Logic Low Voltage	RSMRST_B	RSMRST_B is open drain output pin,			0.3	V
Logic High Voltage	pull up to IO power (V _{IO}) by 10KΩ		0.7*V _{IO}		V _{IO}	V
SUSPWRDACK				<u> </u>		
Logic Low Voltage				0.5		V
Logic High Voltage	Input pin			1.3		V
Pull down current				15		μΑ
DRAMPWROK				<u> </u>		
Logic Low Voltage					0.3	V
Lasta III a Bug III a			0.7*		.,	.,
Logic High Voltage	pull up to BC	JCK4 Internal	V_{BUCK4}		V _{BUCK4}	V
SLP_SOIX_B						
Logic Low Voltage	Innut nin			0.5		V
Logic High Voltage	input pin	Input pin		1.3		٧
Pull down current				15		μΑ
VCCAPWROK						
			ı 			
Logic Low Voltage	VCCV DVV/DCV	K is nuch-null output nin			0.3	V
<u> </u>		K is push-pull output pin, JCK4 internal	0.7*		V _{BUCK4}	V
	Clock Operating Frequency SCK/SDA Logic Low Voltage SCK/SDA Logic Low Voltage Clock Data Fall Time Clock Data Rise Time Internal power supply for I PWRON Internal resister to VINT Logic Low Voltage Logic High Voltage Logic High Voltage RSMRST_B Logic Low Voltage Logic High Voltage SUSPWRDACK Logic Low Voltage Logic High Voltage Logic High Voltage SUSPWRDACK Logic Low Voltage Logic High Voltage Logic High Voltage SUSPWRDACK Logic Low Voltage Logic High Voltage Pull down current DRAMPWROK Logic Low Voltage Logic High Voltage Pull down current	Internal power supply for logic circuit PWRON Internal resister to VINT Logic Low Voltage Logic High Voltage IRQ Logic Low Voltage IRQ is open IO power (V RSMRST_B Logic Low Voltage RSMRST_B Logic High Voltage RSMRST_B Logic High Voltage Input pin Logic High Voltage Pull down current DRAMPWROK Logic Low Voltage Logic High Voltage Pull down current DRAMPWROK Logic Low Voltage Logic High Voltage Logic Low Voltage Logic Low Voltage Logic High Voltage Logic High Voltage Logic Low Voltage Logic Low Voltage Logic Low Voltage Logic High Voltage Logic High Voltage Pull down current	Clock Operating Frequency SCK/SDA Logic Low Voltage SCK/SDA Logic Low Voltage Clock Data Fall Time Clock Data Rise Time Internal power supply for logic circuit PWRON Internal resister to VINT Logic Low Voltage Logic High Voltage IRQ Logic High Voltage RSMRST_B Logic Low Voltage RSMRST_B RSMRST_B Logic Low Voltage Logic High Voltage Input pin Input pin Logic Low Voltage Logic Low Voltage Logic Low Voltage RSMRST_B Clogic Low Voltage RSMRST_B Clogic Low Voltage RSMRST_B is open drain output pin, pull up to IO power (V _{IO}) by 10KΩ RSWPWRDACK Logic Low Voltage Logic Low Voltage Logic Low Voltage Pull down current DRAMPWROK Logic Low Voltage Logic Low Voltage Logic High Voltage Pull down current DRAMPWROK Logic Low Voltage Logic Low Voltage Logic High Voltage Pull up to BUCK4 internal Input pin pull up to BUCK4 internal Input pin Logic High Voltage Logic Low Voltage Logic Low Voltage Logic Low Voltage Logic Low Voltage Logic High Voltage Pull down current Input pin Pull down current	Clock Operating Frequency SCK/SDA Logic Low Voltage SCK/SDA Logic Low Voltage SCK/SDA Logic Low Voltage Clock Data Rall Time 2.2Kohm Pull High Clock Data Rise Time 2.2Kohm Pull High PWRON Internal power supply for logic circuit PWRON Internal resister to VINT S0 Logic Low Voltage Logic High Voltage IRQ is open drain output pin, pull up to Logic High Voltage IRQ is open drain output pin, pull up to Logic High Voltage RSMRST_B is open drain output pin, pull up to IO power (V _{IO}) by 10KΩ 0.7*V _{IO} SUSPWRDACK Logic Low Voltage Input pin Input pin Logic High Voltage Input pin Inpu	Clock Operating Frequency SCK/SDA Logic Low Voltage SDA is Open drain pin O.7*V _{CC}	Clock Operating Frequency SCK/SDA Logic Low Voltage SDA is Open drain pin O.3*V _{CC} O.7*V _C

		T WITE Optimized For W		<u> </u>	,	-,
V _{IL}	Logic Low Voltage	COREPWROK is push-pull output pin,			0.3	V
V _{IH}	Logic High Voltage	pull up to V _{RTCLDO} internal	0.7* V _{RTCLDO}		V _{RTCLDO}	V
Related IO:	PLTRST_B					
V_{IL}	Logic Low Voltage	Input pin		0.5		٧
V_{IH}	Logic High Voltage	πιρατ μπι		1.3		٧
I _{pull-down}	Pull down current			15		μΑ
Related IO:	GPADC		•			
V _{IL}	Logic Low Voltage	DECONUES OF A distribution of		0.5		V
V _{IH}	Logic High Voltage	REG90H[2:0]=010, digital input		1.3		V
V _{IL}	Logic Low Voltage	REG90H[2:0]=000, drive low			0.3	V
V _{IH}	Logic High Voltage	REG90H[2:0]=001, drive high (high level set by REG91H)	0.7	3.3	3.3	V
Related IO:	GPIO1					
V _{IL}	Logic Low Voltage	DECOMMENDED distribution of		0.5		V
V _{IH}	Logic High Voltage	REG92H[2:0]=010, digital input		1.3		V
V _{IL}	Logic Low Voltage	REG92H[2:0]=000, drive low			0.3	V
V _{IH}	Logic High Voltage	REG92H[2:0]=001, drive high (high level set by REG93H)	0.7	3.3	3.3	V

9 Control and operation

When AXP288 works, the TWSI (two wire serial interface) SCK/SDA pin is pulled up to system IO power, and this interface can be used by HOST to access and adjust AXP288's working status.

Note that the external power hereinafter is VBUS input.

9.1 Power on/off and Power sequences

PMIC has power off and power on status. When at off state, all voltage outputs are turned off except VCC_RTC, VINT and charger. At this time if powered by battery, the total power consumption is typically 40uA.

9.1.1 Power on/off sources

Power on source

Below are the 3 power up sources supported by AXP288 in mechanical off state:

- 1. Charger insertion (VBAT > VBPTH)
- 2. Battery insertion (VBAT > VBPTH)
- 3. Power on key pressed (VBAT > VBPTH)

Note: VBPTH (boot threshold), 3.0-3.45V, 150mV/step, 4 steps, default is 3.15V.

Power off source

Below are the few sources that can trigger power down of PMIC:

- 1. ALDOIN $< V_{OFF}$ (indicating IPSOUT too low)
- 2. Faulty condition
- 3. Power on key pressed
- 4. BYT/CHT cold off

Power on from charger insertion

The PMIC should be able to start the boot sequence from a charger insertion. A charger insertion is detected from a rising voltage on the VBUS node. If 4.1V< VBUS < 7.0V, the charger will start charging immediately and autonomously. If the battery level is above the battery boot threshold, the PMIC will continue the boot process, otherwise the charger will continue charging until the battery boot threshold is reached at which point the PMIC will continue the boot process.

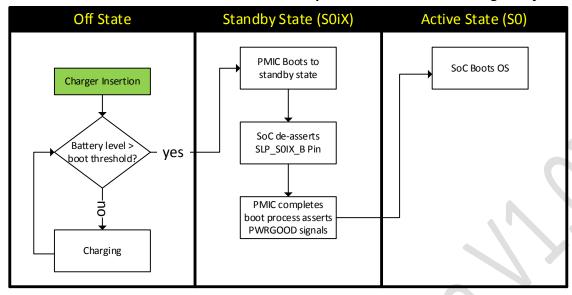


Figure 9-1

Power on from battery insertion

The PMIC should be able to start the boot sequence from a battery insertion. A battery insertion is detected from a rising voltage on the battery node. If the battery level is above the battery boot threshold, the PMIC will continue the boot process.

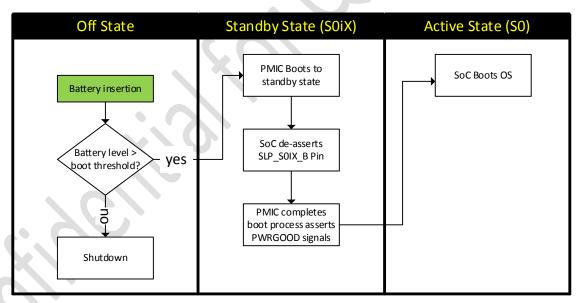


Figure 9-2

Power on from power key pressed

POK----Power On Key

The Power On Key(POK) can be connected between PWRON pin and GND of AXP288. AXP288 can automatically identify the status and then correspond respectively.

The PMIC should be able to start the boot sequence from a power on key pressed. The PMIC has a configurable timer to detect the power on key hold time. Power on key signal in AXP288 is referred as POK. Once falling edge is detected on

PMIC Optimized For Multi-Core High-Performance System

POK, PMIC timer will start counting the hold time. POK signal has to be low for at least 32ms for it to be considered a valid signal. If the power on key hold time exceeds the timer threshold (ONLEVEL determined by REG36H [7:6]), the PMIC will continue to boot as long as the battery voltage is above the battery boot threshold. Otherwise the PMIC will remain off.

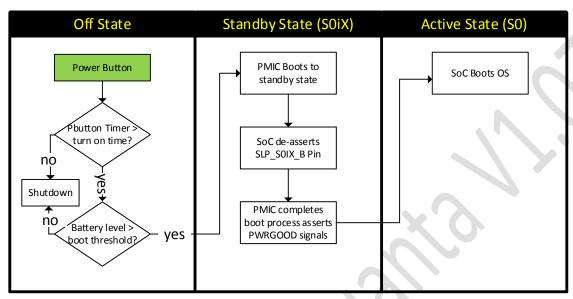


Figure 9-3

Power off from ALDOIN< VOFF

PMIC will constantly monitor voltage level of ALDOIN which is connected to IPSOUT. When VALDOIN < V_{OFF} (default is 2.9V, set in REG 31H[2:0]), PMIC will force shutdown. There will be 500us de-bounce circuit for ALDOIN detection and adjusted hysteresis voltage to prevent false trigger. After force shutdown occurred, PMIC will remain off and wait for power on event to boot up.

V_{OFF} and the compensated hysteresis voltage as below:

Table 9-1

V _{OFF} condition	VX condition (Hysteresis)
V _{OFF} <=3.0V	0.3V
V _{OFF} = 3.1V	0.2V
V _{OFF} = 3.2V or 3.3V	0.1V

Power off due to faulty condition

PMIC will force shutdown once faulty event happened. Faulty event includes VBUS>7V, PMIC internal temperature exceeds warning level3 (set in REG 8FH [2]) and buck output drop more than 15% than the targeted output voltage (set in Reg 81H).

Power off by power on key pressed

Once power on key pressed, POK signal assert low and need to remain low for 32ms to be considered valid. PMIC has configurable timer to detect power on key hold time. If POK remain low for less than IRQLEVEL (set in REG 36H [5:4]), POKSIRQ will be set. For POK hold time > IRQLEVEL, POKLIRQ will be set. Typically, the system uses POKLIRQ to allow user to express

their demands for Host shutdown.

If POK remain low for more than OFFLEVEL (set in REG 36H [1:0]), POKOIRQ will be issued. After IRQ issued, PMIC will wait for a period of time before it force shutdown (set in REG36H[3]). The PMIC can be turned on automatically (set in REG36[2]). The waiting period is programmable from 0s to 70s(set in REG37H[2:0]).

If POK width is more than 16s, then PMIC will force shutdown immediately. This feature can be set in REG 8FH [3]. When PMIC force shutdown, VCC_RTC will be shut off for 2 seconds, with 1K resistor to pull VCC_RTC to ground and then it will turn back on.

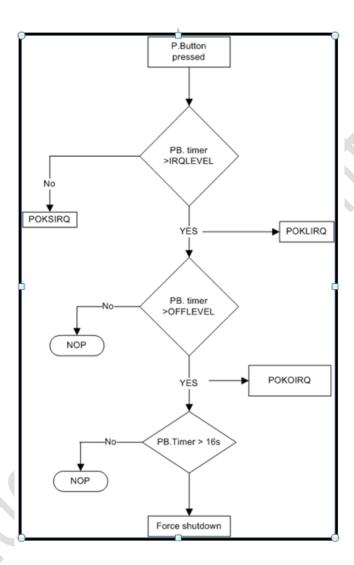


Figure 9-4

9.1.2 Power up sequence

Specially for Intel mode:

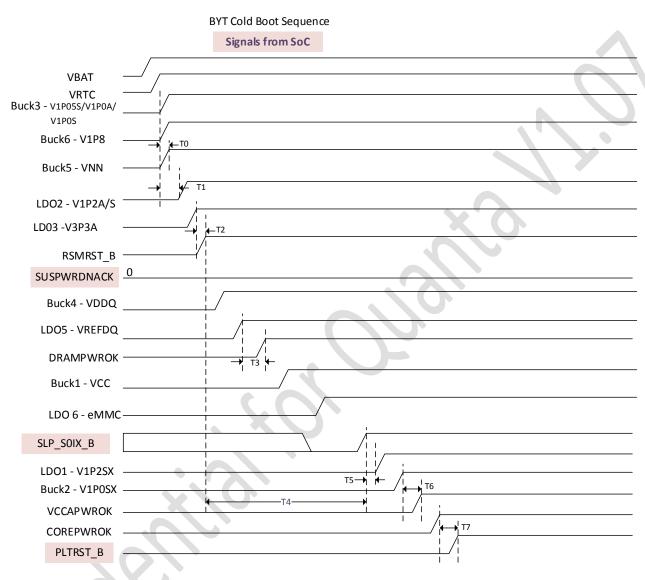


Figure 9-5

- Buck 3, 5 and 6 power up at the same time
- PMIC Power up sequence has no dependency on SUSPWRDNAK signal
- SLP_SOIX_B signal gates pmic performing the remainder power up sequence

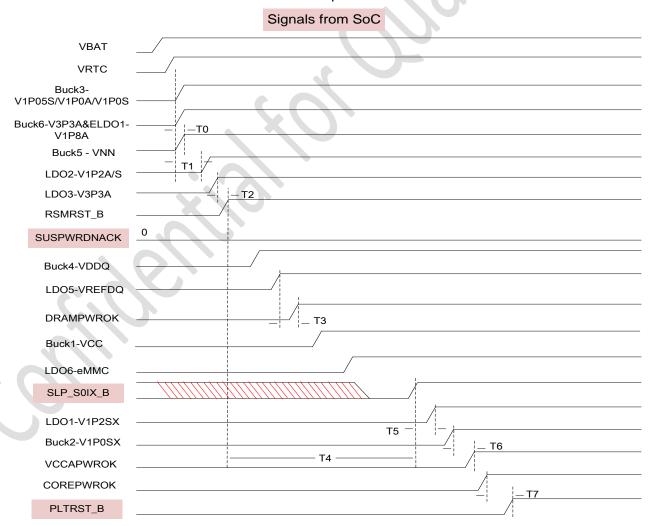
Table 9-2

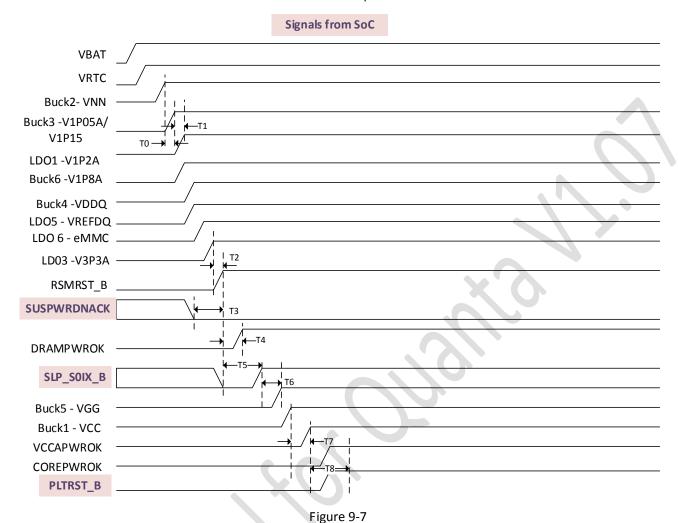
Parameter	Description	Min	Typical	Max	Units
Т0	Rail Ramp-Up Time from 10% to	0.08	1	2	ms
	90% voltage level				
T1	Rail to Subsequent Rail Turn-On	0.5	1	2.05	ms
	Delay				

PMIC Optimized For Multi-Core High-Performance System

Parameter	Description	Min	Typical	Max	Units
T2	V3P3A valid to RSMRST_B	0		150	μs
	de-assertion				
Т3	VREFDQ valid (within +/-10% of	0		150	μs
	its final normal value) to				
	DRAMPWROK assertion				
T4	RSMRST_B de-assertion	80			μs
	toSLP_SOIX_B de-assertion				
T5	SLP_SOIX_B de-assertion to first	0	8	16	ms
	SX rail turn-on delay				
Т6	Core rails valid to VCCAPWEROK		1		ms
	and COREPWROK assertion				
T7	COREPWROK assertion to	60	· ·		μs
	PLTRST_B de-assertion				

BYT Cold Boot Sequence for AXP288D




Figure 9-6

- Buck 3, 5, 6 and ELDO1 power up at the same time
- PMIC Power up sequence has no dependency on SUSPWRDNAK signal
- SLP_SOIX_B signal gates pmic performing the remainder power up sequence

Table 9-3

Dawa wa atau	Description	0.41	Tourisal	N. 4	Linita
Parameter	Description	Min	Typical	Max	Units
T0	Rail Ramp-Up Time from 10% to	0.08	1	2	ms
	90% voltage level				
T1	Rail to Subsequent Rail Turn-On	0.5	1	2.05	ms
	Delay				
T2	V3P3A valid to RSMRST_B	0		150	μs
	de-assertion			λ	
T3	VREFDQ valid (within +/-10% of	0		150	μs
	its final normal value) to				
	DRAMPWROK assertion				
T4	RSMRST_B de-assertion	80	10.		μs
	toSLP_SOIX_B de-assertion				
T5	SLP_SOIX_B de-assertion to first	0	8	16	ms
	SX rail turn-on delay				
T6	Core rails valid to VCCAPWEROK		1		ms
	and COREPWROK assertion				
T7	COREPWROK assertion to	60			μs
	PLTRST_B de-assertion				

CHT Cold Boot Sequence

- Buck6 and LDO1 power up at the same time
- LDO6 and LDO3 can power up at the same time
- PMIC Power up sequence has no dependency on SUSPWRDNAK signal
- SLP_SOIX_B signal gates pmic performing the remainder power up sequence

Table 9-4

Parameter	Description	Min	Typical	Max	Units
TO.	BUCK2 to BUCK3 turn on delay	Buck2 to B	Buck3 turn on	delay should	μs
		follow the st			
		option to			
		compliant w			
T1	Rail to Subsequent Rail Turn-On	0.01	1	2.0	ms
	Delay for all rails unless specified				
	otherwise				

PMIC Optimized For Multi-Core High-Performance System

Parameter	Description	Min	Typical	Max	Units
T2	V3P3A valid (90% level) to	0	24	500	μs
	RSMRST_B de-assertion if				
	SUSPWRDNACK is low				
Т3	SUSPWRDNACK de-assertion	0			μs
	(LOW) to RSMRST_B de-assertion				
T4	RSMRST_B de-assertion to	0		150	μs
	DRAMPWROK assertion				
T5	RSMRST_B de-assertion to	20			μs
	SLP_SOIX_B de-assertion				
Т6	SLP_SOIX_B de-assertion to first	0	24	150	ms
	subsequent voltage rail start to				•
	turn-on delay				
T7	Core rails valid to VCCAPWROK		1		ms
	and COREPWROK assertion				
Т8	COREPWROK assertion to	60			μs
	PLTRST_B de-assertion				

Timing information

Table 9-5

N	Description	Min	Typical	Max	Units
1	Rail Ramp-Up Time from 10% to	0.08	1	2	ms
	90% voltage level				
2	Rail to Subsequent Rail Turn-On	0.5	1	2.05	ms
	Delay				
3	V3P3A valid to RSMRST_B	0		150	μs
	de-assertion				
4	VREFDQ valid (within +/-10% of	0		150	μs
	its final normal value) to				
	DRAMPWROK assertion				
5	RSMRST_B de-assertion to	20			μs
	SLP_SOIX_B de-assertion				
6	SLP_SOIX_B de-assertion to first	0	8	16	ms
	SX rail turn-on delay				
7	Core rails valid to VCCAPWEROK		1		ms
	and COREPWROK assertion				
8	COREPWROK assertion to	60			μs
	PLTRST_B de-assertion				

- VREFDQ power up the same time with VDDQ
- The power down sequence is the opposite sequence of power up

9.1.3 Power down Sequencing

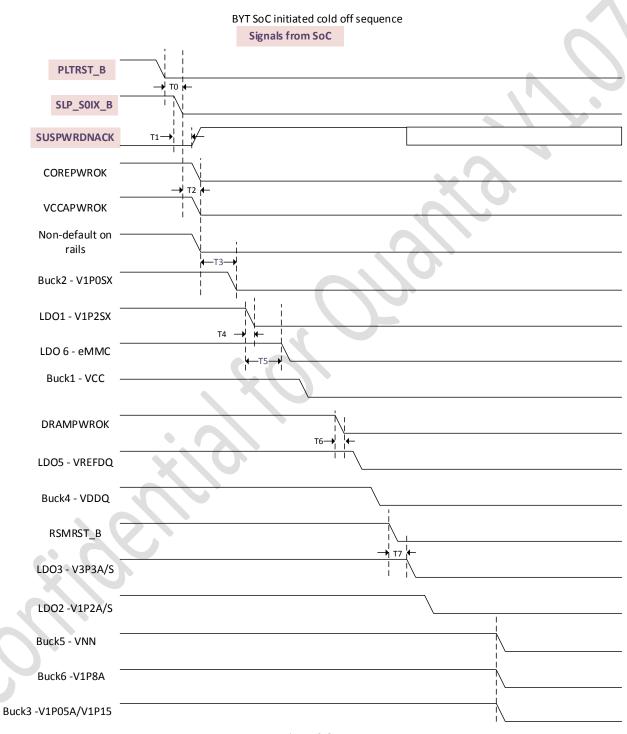


Figure 9-8

- Power down sequencing is the opposite of power up sequencing
- Buck3, Buck5 and Buck6 power down together

Table 9-6

Parameter	Description	Min	Typical	Max	Units
ТО	PLTRST_B assertion to SLP_SOIX_B assertion	31		100	μς
T1	SLP_SOIX_B de-assertion to SUSPWRDNACK assertion	0		50	μς
Т2	SLP_SOIX_B assertion to VCCAPWROK and COREPWROK de-assertion	0		150	μs
Т3	VCCAPWROK and COREPWROK de-assertion to first VR starts to turn off	0	~()	150	μs
T4	Rail Ramp-down Time from 90% to 10% voltage level	0.5	1	2	ms
T5	Rail to Subsequent Rail Turn-Off Delay	0.5	1	3	ms
Т6	DRAMPWROK de-assertion to VREFDQ starts to turn off	0		150	μs
Т7	RSMRST_B assertion to V3P3A starts to turn off	0		150	μs

BYT SoC initiated clod off Sequence for AXP288D

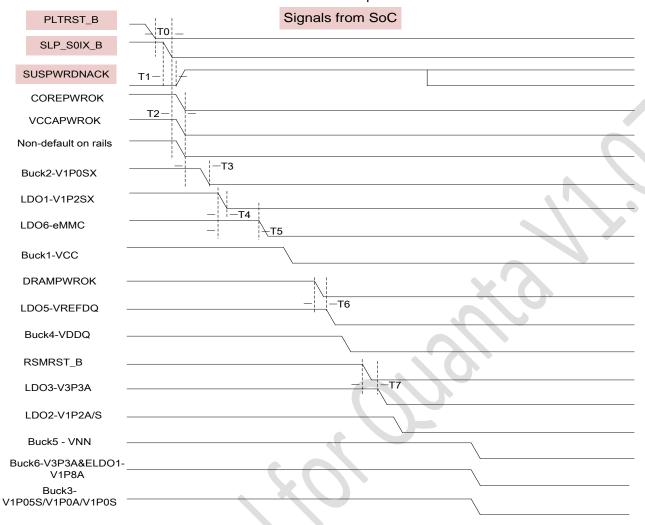


Figure 9-9

- Power down sequencing is the opposite of power up sequencing
- Buck3, Buck5 and Buck6 power down together

Table 9-7

Parameter	Description	Min	Typical	Max	Units
TO TO	PLTRST_B assertion to SLP_SOIX_B	31		100	μs
	assertion				
T1	SLP_SOIX_B de-assertion to	0		50	μs
	SUSPWRDNACK assertion				
T2	SLP_SOIX_B assertion to	0		150	μs
	VCCAPWROK and COREPWROK				
	de-assertion				

Parameter	Description	Min	Typical	Max	Units
Т3	VCCAPWROK and COREPWROK	0		150	μs
	de-assertion to first VR starts to				
	turn off				
T4	Rail Ramp-down Time from 90%	0.5	1	2	ms
	to 10% voltage level				
T5	Rail to Subsequent Rail Turn-Off	0.5	1	3	ms
	Delay				
T6	DRAMPWROK de-assertion to	0		150	μs
	VREFDQ starts to turn off				
T7	RSMRST_B assertion to V3P3A	0		150	μs
	starts to turn off				•

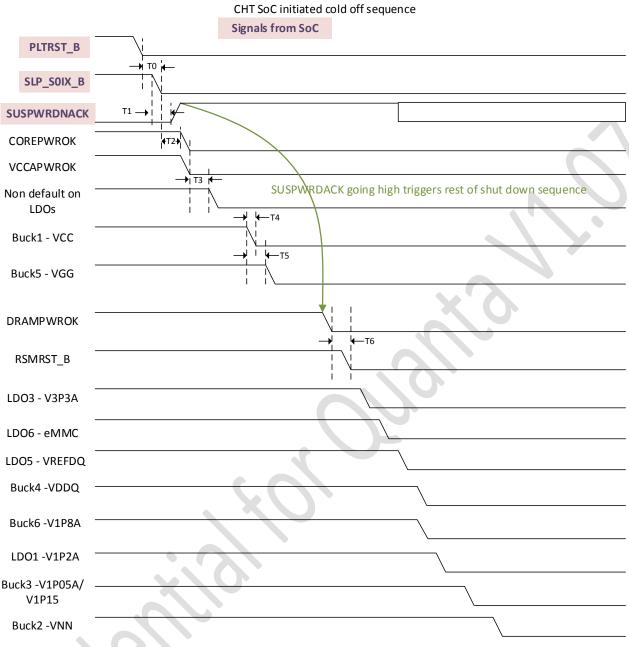


Figure 9-10

Note: Implementation note: SUSPWRDNACK should be sampled after the 50uS

Table 9-8

Parameter	Description	Min	Typical	Max	Units
ТО	PLTRST_B de-assertion to	31		100	μs
	SLP_SOIX_B de-assertion				
T1	SLP_SOIX_B de-assertion to	0		50	μs
	SUSPWRDNACK assertion				
T2	SLP_SOIX_B assertion to	0		150	μs
	VCCAPWROK and COREPWROK				
	de-assertion				

PMIC Optimized For Multi-Core High-Performance System

Parameter	Description	Min	Typical	Max	Units
Т3	VCCAPWROK and COREPWROK	0		150	μs
	de-assertion to first VR starts to				
	turn off	rn off			
T4	Rail Ramp-down Time from 90%	0.5	1	2	ms
	to 10% voltage level	6 voltage level			
T5	Rail to Subsequent Rail Turn-Off	0.5	1	3	ms
	Delay				
Т6	DRAMPWROK de-assertion to			150	μs
	RSMRST_B assertion				

9.1.4 Cold Reset and Global reset

Reset types:

- Global reset: partial power down followed by power up
- Cold reset: full power down followed by power up

There are two special scenarios where a cold reset can be enabled by having the SoC either initiate a cold off or a cold reset in conjunction with a bit in the PMIC being set. These two bits are the COLDRSTEN1 and COLDRSTEN bits as defined below.

Table 9-9

BIT	NAME	FUNCTION	DEFAULT
D[7:2]	RSVD	Reserved	0
D[1]	COLDRSTEN1	Sets whether a global reset or cold reset is	0
	X	done when a global reset is initiated by the SoC	
		0 – COLD RESET not enabled	
		1 – COLD RESET enabled	
D[0]	COLDRSTEN	Sets whether a cold off or cold reset is done	0
		when a cold off is initiated by the SoC	
		0 – COLD RESET not enabled	
		1 – COLD RESET enabled	

Cold Reset scenario 1:

The diagram below shows the first special case of a cold reset being enabled based on a cold off and the PMIC register bit being set.

BYT and CHT SoC Initiated Cold Reset

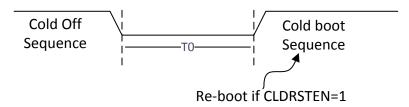
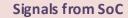


Figure 9-11


Table 9-10

Parameter	Description	Min	Typical	Max	Units
ТО	Time delay between power down		50		ms
	complete and power up start				

Cold Reset scenario 2:

The diagram below shows the second special case of a cold reset being enabled based on a global reset and the PMIC register bit being set.

Global Reset sequence turned into Cold Reset Sequence

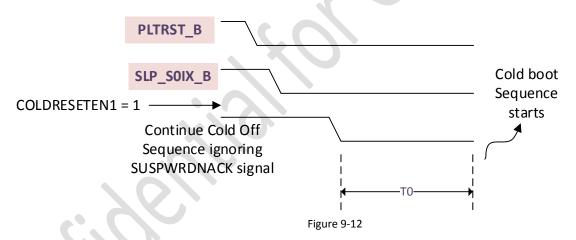
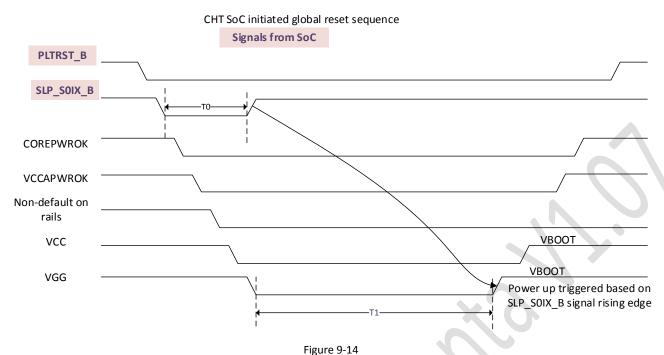


Table 9-11

Parameter	Description	Min	Typical	Max	Units
T0	Time delay between power down		50		ms
	complete and power up start				

BYT SoC initiated global reset



Note:

- Power down and power up timing follow cold off and cold boot timing
- Rail power up sequencing will wait until SLP_SOIX_B signal goes high to begin the sequence
- If SLP_SOIX_B signal goes high before power down sequence completes, power down sequence should complete before power up begins
- PLTRST_B to SLP_SOIX_B delay could be zero

Table 9-12

Parameter	Description	Min	Typical	Max	Units
то	Time that the SLP_SOIX_B signal stays	0.1		No max	ms
	low				
T1	Time for which rails stay down before		50		ms
	power up sequence begins				

Note:

- Power down and power up timing follow cold off and cold boot timing
- Rail power up sequencing will wait until SLP_SOIX_B signal goes high to begin the sequence
- If SLP_SOIX_B signal goes high before power down sequence completes, power down sequence should complete before power up begins
- PLTRST_B to SLP_SOIX_B delay could be zero

Table 9-13

Parameter	Description	Min	Typical	Max	Units
Т0	Time that the SLP_SOIX_B signal stays	25		No max	ms
	low				
T1	Time for which rails stay down before		50		ms
	power up sequence begins				

9.1.5 Sleep state control

Description:

- 1. Set the REG 9AH REG 9EH
- 2. SOC set $\ensuremath{\mathsf{SLP}}\xspace_{\ensuremath{\mathsf{SOIX}}\xspace}\xspace B$ low, the power rails power down
- 3. SOC set SLP_SOIX_B high, the power rails power up

Default rail status

The following table is a list of the default on rails. The table also shows what the rail status is during sleep.

Table 9-14

Voltage	Rail Function	Sleep State based on	Off State
Regulator		SLP_SOIX_B pin	
BUCK1	VCC	Off (based on register setting)	Off
BUCK2	V1POSX (BYT)	BYT(Off), CHT(On) – based on	Off
	VNN (CHT)	register setting	
		Reduced voltage based on	
		register setting	
виск3	V1P0/V1P05/V1P15	Regulator is On	Off
		Reduced voltage based on	
		register setting	
BUCK4	VDDQ	On	Off
BUCK5	VNN (BYT)	BYT(On), CHT (Off) – based on	Off
	VGG (CHT)	register setting	
		Reduced voltage based on	
		register setting	
BUCK6	V1P8	On	Off
LDO1	V1P2SX (BYT)	Off	Off
	V1P2A (CHT)		
LDO2	V1P2A (BYT)	On	Off
LDO3	V3P3A	On	Off
LDO4	VRTC	On	On
LDO5	VREFDQ	On	Off
LDO6	еММС	On	Off
All other rails are	controlled by the driver	Based on register control from	Off
\ \ (the driver	

BYT Standby entry and exit sequence

BYT Standby entrance sequence

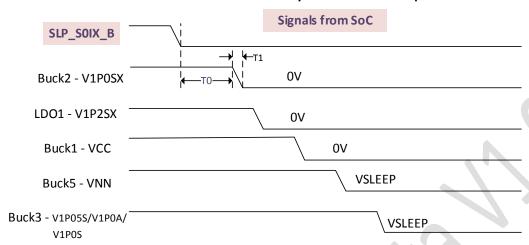


Figure 9-15

Table 9-15

Parameter	Description	Min	Typical	Max	Units
TO	SLP_SOIX_B assertion to first SX	0	5	100	μs
	rail starts to turn off				
T1	Rail Ramp-down Time from 90%	0.5	1	2.0	ms
	to 10% voltage level				
T2	Rail to Subsequent Rail Turn-Off	0.5	1	3.0	ms
	Delay				

BYT Standby exit sequence

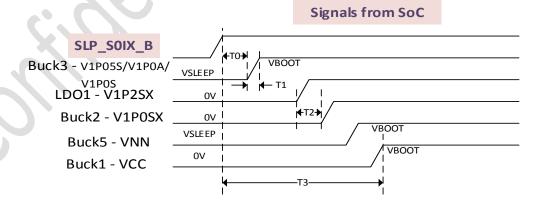


Figure 9-16

Table 9-16

Parameter	Description	Min	Typical	Max	Units
Т0	SLP_SOIX_B de-assertion to first	0		100	μs
	SX rail starts to turn on				
T1	Rail Ramp-Up Time from 10% to		0.08	1	ms
	90% voltage level				
T2	Rail to Subsequent Rail Turn-On			1	ms
	Delay				
Т3	Total SOIX exit latency: from		0.2	4.1	ms
	SLP_SOIX_B de-assertion to all				
	VRs are within its specified				
	tolerance				

CHT Standby entry and exit sequence

CHT enter Standby Sequence

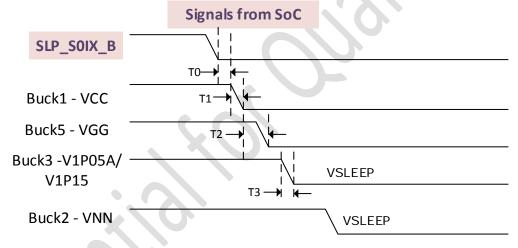


Figure 9-17

Table 9-17

Parameter	Description	Min	Typical	Max	Units
TO	SLP_SOIX_B assertion to voltage	0		100	μs
	rail starts to ramp down				
T1	VR rail ramp-down time from 90%	0.01	1	3.0	ms
	to 10% voltage level for all VRs				
	unless specified otherwise				
T2	VR to subsequent VR turn-off	0.1	1	3.0	ms
	delay for all VRs unless specified				
	otherwise				
T3	Ramp down slew rate for BUCK3	2.5		10	mv/μs
	to VSLEEP voltage				

CHT exit Standby Sequence

Signals from SoC

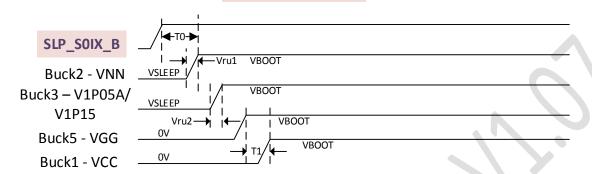


Figure 9-18

Table 9-18

Parameter	Description	Min	Typical	Max	Units
TO	SLP_SOIX_B assertion to voltage	0	8	100	μs
	rail starts to ramp up		10		
T1	VR to subsequent VR Turn-On	0	0.08	1	ms
	Delay for all VRs unless specified				
	otherwise				
Vru1	Buck2 voltage ramp-up slew rate	2.5		10	mv/μs
	to VBOOT				
Vru2	Buck3 voltage ramp-up slew rate	2.5		10	mv/μs
	to VBOOT				

9.2 IPS (Intelligent Power Select)

AXP288 has Intelligent Power Select (IPS) to select the appropriate source to power the system. The output of IPS, IPSOUT will then be used as power source for downstream regulators and battery charger. For single input power source system, the power source needs to be connected to both VBUS power pins as shown in Figure 9-17.

9.2.1 IPS overview

Input Power Sources Block Diagram

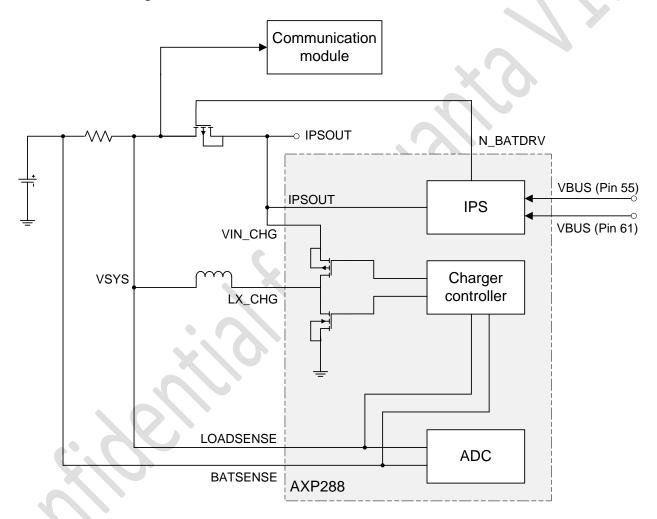


Figure 9-19

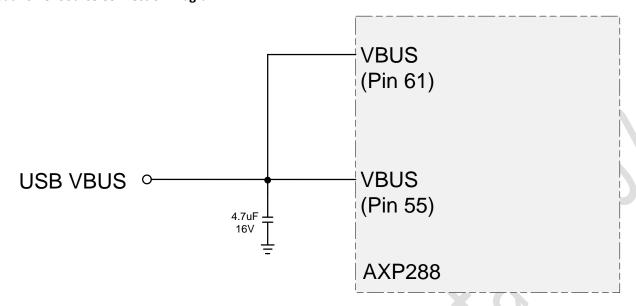


Figure 9-20

- o If only Li- Battery is available, and no external power input, Li- Battery is used for power input;
- o If external power is available (VBUS), it is preferred in power supply
- o If Li- Battery is available, it will "Seamlessly" switch to Li- Battery once external power is removed
- o If the current is still insufficient, charge current will be reduced to zero, and Battery is used for one of power sources

9.2.2 IPSOUT source selection

For single input power source, VBUS source is channeled to IPSOUT when REG 30H[7] is set to 0 (default). For whatever reason, if VBUS source need to be disconnected from IPSOUT, set REG 30H[7] to 1. Note that when BC Detection module is detecting, REG 2CH[2] = 1, VBUS to IPSOUT channel is OFF.

VBUS Select Setting

Table 9-19

REG 30H[7]	REG 2CH[2]	VBUS_SEL
0	0	1
1	Х	0
X	1	0

Table 9-20

I	REG 30H	Description	R/W	Default
	Bit 7	VBUS path select control (VBUS_SEL) when VBUS valid	RW	0
		0: VBUS path selected		
		1: VBUS path not selected		

Table 9-21

REG 2CH	Description	R/W	Default
Bit 2	BC_status (BC Detection status)		0
	1: Detecting, this bit is set when BC Detection start		
	0: Detection complete		

Input Source Select Setting

Table 9-22

VBUS_SEL	REG 00H[4]	IPSOUT from
1	1	VBUS
0	1	VSYS
x	0	VSYS

Table 9-23

REG 00H	Description		Default
Bit4	Indication VBUS can be used or not	R	0

9.2.3 VBUS current/voltage limitation

VBUS input power source has minimum hold voltage (VHOLD) setting and current limit setting. When the input source voltage drops below its VHOLD setting, it is considered as not having sufficient power. IPS will limit the current draw automatically so that the input source voltage is hold to this minimum level.

VBUS VHOLD is set as max of VBAT+0.15V or 30H[5:3] whereas VBUS current limit can be set through REG 35H[7:4].

VHOLD minimum voltage value can be set through the REG30H:

Table 9-24

5	V _{HOLD} setting bit 2	000: 4.0V; 001: 4.1V; 010: 4.2V	RW	1
4	V _{HOLD} setting bit 1	011: 4.3V; 100: 4.4V; 101: 4.5V	RW	0
3	V _{HOLD} setting bit 0	110: 4.6V; 111: 4.7V	RW	0

VBUS current limit is set by REG35H[7:4]:

Table 9-25

7:4	VBUS current lin	VBUS current limit select when VBUS Current limited mode is enable				
	0000-100mA	0000-100mA 0001-500mA 0010-900mA 0011-1500mA				
	0100-2000mA	0101-2500mA	0110-3000mA	0111-3500mA		
	1xxx-4000mA					

For the case of battery charger detection enabled, once the USB charger detection is completed, VBUS current limit will be guided by the result of the detection. Subject to the type of USB charger detected, the current limit set in REG 35H[7:4] will be auto updated by the value set in REG 30H[1:0]. For example, if the BC detection result indicates SDP, the current limit in REG 35H[7:4] will be set to 500mA (900mA if it is USB 3). If the detected USB charger is CDP or DCP, the current limit in REG 35H[7:4] will then be updated according to the setting in REG 30H[1:0].

Table 9-26

REG 2FH[7:5]	Current limit	Description
SDP	500mA	USB connected. After communication, CPU can identify
Other	REG30H[1:0]	USB3.0,then change the current limit to 900mA

VBUS with the BC detection:

AXP288 has battery charger detection module that capable of detecting type of USB charger plug onto the port. Below is the battery charger detection flow.

VBUS 2C[0]=1?BCD Enable? **Insert** N BC1.2 detect 2C[2] = 1D Line Floating Detection 2C[2]=0? SDP DP/M BC1.2 result? Floating? 0ther Set current limit Set to 500mA 30_[1:0] VBUS Path Select and Dead battery Charge Enable flow in off mode VBUS Valid Status Set HOST USB USB3.0? Connect Set to 900mA

Figure 9-21

When REG 2CH[0] is set to 1, battery charger detection module will start to operate. Upon completion of the BC detection (REG 2CH[2] = 0), AXP288 will automatically update the detection result onto REG 2FH[7:5]. If the BC detection result indicate SDP, the current limit will be set to 500mA (900mA if it is USB 3) or else the current limit will follow the setting in REG 30H[1:0].

9.2.4 VBUS input overvoltage protection

VBUS to IPSOUT path have a regulator, target of 5.0V:

Table 9-27

Input power	IPSOUT	CHGLED	Contents
>7V	5V	Floating	PMIC shutdown
>6.3V	5V	2Hz toggle	Work normally
>5.06V	5V	Charge LED	
<5.06	Vin-0.06V	Charge LED	
<3.5V	Vin-0.06V	Charge LED	Invalid

9.2.5 VBUS insertion power up condition

The PMIC will start the boot sequence at the point of VBUS insertion. A VBUS insertion is detected from a rising voltage on the VBUS node as long as it is larger than 4.1V. The existence of VBUS is stored in REG 00H[5]. The charger will start charging immediately and automatically. If the battery level is above the battery boot threshold, the PMIC will continue the boot process, otherwise the charger will continue charging until the battery boot threshold is reached, at this point the PMIC will continue the boot process. Please refer to Section 9.1 for detail flow chart.

9.3 BC Detection Module

This section is primarily based on battery charging specification, for more information please refer to BC rev1.2 specifications. AXP288 is compatible with BC rev1.2 and can identify SDP/CDP/DCP except ACA The PMIC can detect the device type without software activity.

Table 9-28

Device	Description	Compatible
SDP	Standard Downstream Port	PMIC can identify
CDP	Charging Downstream Port	PMIC can identify
DCP	Dedicated Charging Port	PMIC can identify
ACA	Accessory Charger Adapter	PMIC can't identify

Please refer to REG36H for detailed information.

9.4 Adaptive PWM Charger

The AXP288 battery charger solution has two charging modes that it can be in. It is specifically designed to charge Li Ion or Li Polymer type batteries. The two modes are 1) Pre Charge Mode and 2) Fast Charge Mode. The delineation between these two modes is based on the battery voltage level of VTRKL which is set at 3.0V.

When battery voltage, VBATSENSE is between 0V to 3.0V (VTRKL), the charger is in Pre Charge Mode where charging current is limited to a value of ITRKL (10% of ICHRG, default value is 120mA). This mode of operation is intended to prevent damage to the battery. Once VBATSENSE ≥ VTRKL, the charger will enter Fast Charge Mode. The Fast Charge Mode can be subdivided into two phases, namely the constant current phase (CC) and the constant voltage phase (CV). The CC phase takes place when VBATSENSE is in between VTRKL and VTRGT. It will charge with constant ICHRG. When VBATSENSE reach VTRGT, charger will operate at CV phase. At this phase, charger will charge with constant voltage of VTRGT.

9.4.1 Charger Overview

Figure 9-22

VTRGT is programmed in REG 33H[6:5] and ICHRG is in REG 33H[3:0] whereas VTRKL is fixed at 3V and ITRKL is set as 10% of ICHRG.

9.4.2 Charging start and stop

When VBATSENSE is between 0V to 3.0V (VTRKL), the charge operation will start when VBUS insert and REG 33H[7] is set to 1. The charging operation will cease when VBATSENSE is > VTRGT-0.1V and charging current < 10% of ICHRG.

9.4.3 Timeout activity

Refer to REG 34H, there are 2 timers that can be programmed as charging expire time, REG 34H[7:6] for Pre Charge and REG 34H[1:0] for Fast Charge Mode. When the actual charge current is less than 20% of the ICHRG, the timer will automatically hold. When the timer expired, charger will no longer charge with programmed charging current. Instead, it will turn into safe mode. Under safe mode, charger will always charge the battery with 5mA until VBATSENSE > VTRGT – 0.1V. When the charger exits from safe mode, it will assert the IRQ. The safe mode status is reflected in REG 01H[3] and SOC can get the mode status through this bit.

Table 9-29

REG 34H	Description		R/W	Default
Bit				
7	Pre-charge Timer length setting 1	00: 40 minutes; 01: 50 minutes;	RW	0
6	Pre-charge Timer length setting 0	10: 60 minutes; 11: 70 minutes.	RW	1
1	Fast charge maximum time setting 1	00: 6 hours; 01: 8 hours;	RW	0
0	Fast charge maximum time setting 0	10: 10 hours; 11: 12 hours.	RW	1

Table 9-30

REG 01H	Description	R/W	Default
Bit3	Indicate battery active mode	R	
	0-charger is not in battery active mode		
	1-charger is in battery active mode		

There are two ways to reset or exit from safe mode. One is plug out and re-insert the input power source or toggle charger enable bit.

9.4.4 CHGLED activity

AXP288 provides CHGLED pin. The LED connected to this pin can be used to indicate charger status and input power sources over voltage alarm. There are two Charge LED modes that can be configured through REG 34H[4] if REG 32H[3] is set to 1.

Table 9-31

REG 34H	Description	R/W	Default
Bit 4 CHGLED Mode select when REG 32H[3] is 1		RW	0
	0: Type A; 1: Type B		

Table 9-30

REG 32H	Description			Default
Bit 5-4	CHGLED pin control	00: Hi-Z	RW	00
		01: 25% 0.5Hz toggle		

		10: 25% 2Hz toggle		
		11: drive low		
Bit 3	CHGLED pin control	0: controlled by REG 32H[5:4]	RW	0
		1: controlled by Charger		

Charge LED indicator

Table 9-32

CHGLED pin	Mode A	Mode B
Z (tri-state)	Not charging	Not charging due to
		1. no external power source or
		2. external power source is
		insufficient and battery is
		discharging
25% duty 1Hz (Z/Low)	Abnormality alarm due to	Charging
	charger timeout or	
	2. IC temperature > warning	
	level 2)	
25% duty 4Hz (Z/Low)	Overvoltage alarm (VBUS > 6.3V)	Alarm due to
		1. VBUS > 6.3V or
		2. charger timeout or
	$(X \cup Y)$	3. IC temperature > warning
		level 2)
Low	Charging	Not charging due to battery is fully
		charged

9.4.5 Battery detection

When the VBATSENSE<2.2V, AXP288 judge it as battery is not present. When VBATSENSE goes higher than 2.2V, it indicates battery present or is inserted. For the case of battery insertion or removal, IRQ will be asserted. Battery presence status is indicated in REG01H[5]and the battery detection function can be set by REG 32H[6]. When charger insert, AXP288 will send a pulse to detect battery is present or not per 16 seconds.

9.4.6 Temperature protection

AXP288 has built in thermal protection for the IC itself with 3 levels of warning. Each warning level has 6.% different in threshold compare to the next level and each warning level has hysteresis gap of 13.6°C. Below are the charger responses with respect to each thermal warning level.

Table 9-33

Warning	AXP288 Response
	Once the IC temperature exceeds this level, charger will charge at minimum charging current.
Level 1	When IC temperature drops below hysteresis limit, charger will automatically go back to its
	original charging state.
	If IC temperature continue to rise and exceeds this level, charger will continue to charge at
Level 2	minimum charging current. Charge LED will provide indication according to Table 9-31 . If IRQ is
	enabled in REG43H[7], IRQ will be asserted and its status can be read from REG 01H[7].
Laval 2	If IC temperature exceeds this level, all the behavior is the same as level 2 but if REG8FH[2] is
Level 3	set to 1, IC will automatically shut down.

Table 9-34

REG 43H	Description	R/W	Default
Bit			
7	The PMIC temperature over the warning level 2 IRQ (OTIRQ) enable	RW	0

Table 9-35

REG 01H	Description	R/W	Default
Bit	~\O`		
7	Indication PMIC die over temperature or not	R	0
	0: not over temperature; 1: over temperature		

Table 9-36

REG 8FH	Description	R/W	Default
Bit 2	The PMIC shut down or not when Die temperature is over the warning	RW	0
	level 3		
() '	0-not shut down		
	1-shut down		

Beside built in IC thermal protection, AXP288 has the capability to sense one external thermal sensor (for battery temperature) through TS pin.

Block Diagram for Battery Temperature Measurement

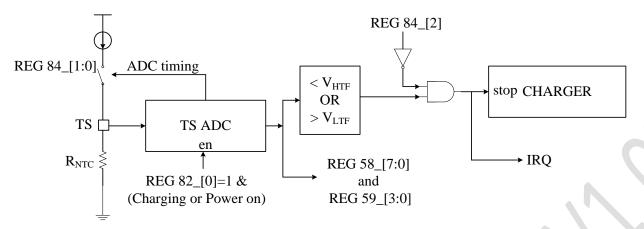


Figure 9-23

AXP288 has built in current source that can be used to inject to external thermal sensor thru TS pin for temperature reading. This current source has 4 level of current which can be programmed through REG 84H[5:4]. By default, the current source will only be injected when ADC is going to read the temperature data. The ADC to read TS pin input is enabled by setting REG 82H[0] to 1. However the current source switch can be programmed to always OFF or ON or only ON when charger is charging through REG 84H[1:0].

Table 9-38

REG 84H	Descr	iption	R/W	Default
Bit				
5-4	Current source from TS pin control:		RW	11
	00: 20uA; 01: 40uA; 10: 60uA; 11: 80ı	JA.		
1-0	Current source from TS pin on/off	00: off	RW	10
	enable bit [1:0]	01: on when charging battery, off		
	×/0	when not charging		
	out of the ADC phase, for power			
	767			
60		11: always on		

Table 9-39

REG 82H Bit	Description		R/W	Default
0	TS pin input to ADC enable	0: off, 1: on	RW	0

When the current source is injected to thermal sensor (NTC), it will create a voltage drop across NTC and this voltage will be read by 12 bits ADC thru TS pin. The 12 bits code output of the ADC will then be stored in REG 58H (HSB 8) & REG 59H (LSB 4). The relation of TS pin voltage to 12 bits ADC output code is as below:

12 bits ADC output code = $R_NTC(\Omega)$ * REG 84[5:4](μ A) / (0.8 * 10³).

Table below is the example by using 10K NTC from Murata (NCP15XH103F03R).

Table 9-40

Tamanamatura (°C)	D NTC (O)	TC Dip Voltage (V)	12 bits ADC output code		
Temperature (°C)	R_NTC (Ω)	TS Pin Voltage (V)	REG 58H[7:0]	REG 59H[3:0]	
-10	40260	3.221	FВн	АН	
0	26490	2.119	A5H	8H	
25	10000	0.800	3Ен	8H	
40	5840	0.467	24н	7H	
45	4924	0.394	1Ен	СН	
55	3550	0.284	16н	3H	

There are 2 battery over temperature (OTP) and 2 under temperature (UTP) thresholds can be set to protect the battery by either controlling the charger or shutdown the system. The first level OTP & UTP thresholds are programmed by REG 38H & REG 39H. The second level OTP & UTP threshold are programmed by REG 3CH & REG 3DH. When battery temperature is higher or lower than the first level OTP or UTP threshold, IRQ is asserted, charger will stop charging and REG 01H[6] change to 0 to reflect the status. When battery temperature is higher or lower than the second level OTP or UTP threshold, IRQ is asserted. System may or may not shutdown subject to SW decision. There is a hysteresis of 460.8 mV(refer to TS pin voltage) for UTP threshold, and there is a hysteresis of 57.6 mV for OTP threshold. Every time when the battery temperature comes out from first level over or under temperature, IRQ is asserted. Charger restores the original charging state and REG 01H[6] change to 1. In normal case, first level of OTP & UTP thresholds should be set within the second level OTP & UTP thresholds.

Using TS pin current source and obtain TS pin data of the following table:

Table 9-41

Usage condition	setting	Key point		
X / O.				
Don't need temperature protection	TS = GND, REG 84H[1:0] = 00,	TS work as GPADC		
	(default 00),REG84H[2] = 1			
Temperature protection when in charger	REG 84H[1:0] = 01	Current source on when		
		charging		
Temperature protection when in charging and	REG 84H[1:0] = 10			
discharging				
TS for GPADC or GPIO	REG 84H[1:0] = 11 when need current			
	source			
	REG 84H[1:0] = 00 when not need			
	current source			

Logic Table:

Table 9-42

REG84H[2] Function	REG82H[0] ADC Enable	REG84H[1:0] Current	Work mode	IRQ	Note
0	0	xx	TS	NO	
0	1	00	TS	NO	
0	1	01	TS	IRQ when in Charging	all IRQ work
0	1	10/11	TS	IRQ all times	
1	0	xx	GPADC	NO	TS function disable

9.5 Multi-Power Outputs

BUCK1-6 are dual mode (PFM / PWM), by default is auto switch mode. All Buck and PWM charger are synchronized with frequency of 3MHz (with spread spectrum option), hence small value external inductors and capacitors components can be used.

All Buck and LDO have current limiting protection function. When the load current exceeds the current limit, the output voltage will drop. Meanwhile, all of the Buck output voltage will be monitored. If the Buck output voltage is 15% lower than the set value and BUCK 85% low voltage turn off PMIC function (REG 81H) is enabled, PMIC will automatically force a shutdown and PWROK pin becomes low. Buck output voltage monitor de-bounce time setting is available at REG 8EH[7:6].

BUCK1-5 has DVM enable option. In DVM mode, when there is a change in the output voltage, BUCK will change to the new targeted value step by step. If the application does not require use of any Buck, the LX pin can be left floating while VIN and PGND need to be connected. PMIC will automatically detect this state to turn off the Buck.

Table 9-43

X-Powers	Intel	Input	Default Voltage	Max Current	Default State	Application
BUCK1	BUCK1	IPSOUT	1.0V	3A	on	VCC
BUCK2	BUCK2	IDSOLIT	1.0V	1.8A	on	V1POSX (BYT),
BUCKZ	BUCKZ	IPSOUT	1.00	1.0A	on	VNN (CHT)
BUCK3	BUCK3	IPSOUT	1.0V	2.5A	on	V1P0/1P05/A/S
BUCK4	BUCK4	IPSOUT	1.5/1.36/1.24V	2.5A	on	VDDQ
BUCK5	BUCK5	IPSOUT	1.0V	6A	on	VNN (BYT),
(Dual Phase)	BUCKS	123001	1.00	6A	on	VGG CHT)
DITICKC	DITICKC	IDCOLIT	1.8V	1.5	0.00	V1P8A/S
BUCK6	BUCK6	IPSOUT	3.3V(only for	1.5	on	V3P3A(only for

			AXP288D)			AXP288D)
FLD01		IDCOLIT	1.007	0.44		V1P8A(only for
ELDO1		IPSOUT	1.8V	0.4A	on	AXP288D)
ALDO3	LDO3	IPSOUT	3.3V	0.2A	on	V3P3A/S
FLDO1	LDO1	>1.2V	1.25V	0.3A	on	V1P2SX
FLDO2	LDO2	>1.2V	1.25V	0.1A	on	V1P2A/S
FLDO3	LDO5	>1.2V	V _{BUCK4} /2	0.03A	on	VREFDQ
RTCLDO	LDO4	IPSOUT	3.0V	60mA	Always on	RTC

Both VINT and VCC_RTC input from IPSOUT. As long as any of the VBUS or BAT power exists, they will not power down. VINT output is fixed at 1.8V, while VCC_RTC is fixed at 3.0V.

9.6 ADC

PMIC has a 12Bit SAR ADC. The ADC input range is 0V to 2.0475V, with is 0.5mV/step. Voltage and current ADC has sampling frequency option of 800/400/200/100Hz. The relationship between input signal and data is listed below:

Channel function 000H **STEP FFFH** Condition 4.5045V BAT voltage (BATSENSE) 0mV 1.1mV Power On Current offset 0mA 1mA 4.095A Charging or power on BAT discharge current 0mA 1mA 4.095A Power on Internal temperature Charging or Power on 4.095A BAT charge current 0mA 1mA Charging or Power on TS pin input 0mV 0.8mV 3.276V Charging or Power on

Table 9-44

0mV

Current ADC measured the current through the 10mohm resistor between BATSENSE and LOADSENSE. For internal temperature, internal logic will do the ADC data comparison with register set warning level for sending over-temperature alarm or shutdown. To identify the battery current direction, the charge current and discharge current value will be compare base on status of charger enable, battery present and VBUS present indication.

0.8mV

3.276V

Power On

9.7 Fuel Gauge

GPIO0 pin input

The Fuel Gauge comprises 3 modules – Rdc calculation module; OCV (Open Circuit Voltage) and Coulomb counter module; and calibration module. The Fuel Gauge system is able to export information about battery to application such as Battery capacity percentage (REG B9H), Battery Voltage (REG 78H, REG 79H), Battery charging current (REG 7AH, REG 7BH), Battery discharge current (REG 7CH, REG 7DH), Battery maximum capacity (REG E0H, REG E1H), Battery Rdc value (REG BAH, REG BBH).

AXP288 Datasheet V1.06

Copyright © 2014 X-Powers Limited. All Rights Reserved.

The Fuel Gauge can be enabled or disabled via REG B8H. The Battery low warning can be set in REG E6, and IRQ (REG 4BH) will be sent out to alert the platform when the battery capacity percentage is lower than the warning level set in REG E6H.

Once a default battery is selected for a particular design, it is highly recommended to calibrate the battery to achieve better Fuel Gauge accuracy. The calibration procedure is documented in separate Application Guide – **AXP288 Battery Calibration Application Guide**. Once the calibration data are available, user can write the calibration info to the following register – REG COH – DFH (OCV percentage table) on each boot. Or user can choose not to do the calibration and use the default OCV percentage value. Additionally, the Fuel Gauge system is capable to learn the battery characteristic on each Full charge cycle. Information such as Battery Maximum capacity (REG EOH, REG E1H) and Rdc (REG BAH, REG BBH) will be updated automatically over time.

OCV Percentage Table

Table 9-45

Dog Addross	Dorcont	004
Reg Address	Percent	OCV
	0	2. 9920
CO	RW(H)	3. 1328
C1	RW(H)	3. 2736
C2	RW(H)	3. 3440
C3	RW(H)	3. 4144
C4	RW(H)	3. 4848
C5	RW(H)	3. 5552
C6	RW(H)	3. 5904
C7	RW(H)	3.6080
C8	RW(H)	3. 6256
C9	RW(H)	3. 6432
CA	RW(H)	3. 6608
СВ	RW(H)	3. 6960
CC	RW(H)	3. 7312
CD	RW(H)	3. 7664
CE	RW(H)	3.8016
CF	RW(H)	3.8192
D0	RW(H)	3. 8368
D1	RW(H)	3.8544
D2	RW(H)	3.8720
D3	RW(H)	3. 9072
D4	RW(H)	3. 9424
D5	RW(H)	3. 9776
D6	RW(H)	4. 0128
D7	RW(H)	4. 0480
D8	RW(H)	4. 0832
D9	RW(H)	4. 1184
DA	RW(H)	4. 1360
DB	RW(H)	4. 1536
DC	RW(H)	4. 1888
DD	RW(H)	4. 224
DE	RW(H)	4. 2592

DF	RW(H)	4. 2944
	100	4. 3296

9.8 Interrupt Controller

PMIC Interrupt Controller monitors such as low power, bad battery, PWRON pin signal, over temperature, GPIO input edge signals such as trigger events. When the events occur, corresponding IRQ status will be set to 1, and will drive IRQ pin (NMOS open drain) asserted low. When host detect triggered IRQ signal, host will scan through the trigger events and respond accordingly. Meanwhile, Host will reset the IRQ status by writing "1" to status bit. Host will always check every IRQ status from time to time and only will take effect with respective relevant enabled IRQ bit only.

The input edge IRQ of GPIO will only functions when GPIO pin is set as Digital input, and the function will take effect when input edge IRQ is enable. The input will go through about 1ms of de-bounce and corresponding IRQ will trigger when detect rising and falling edge. Rising, falling, or both edge triggering is control by corresponding IRQ register bit.

8bits event timer will issue timeout IRQ. Clearing IRQ doesn't start counter.

9.9 TWSI

The PMIC is compatible with a host-controlled environment, functioned as a slave port enabling serial interface compatible hosts to write to or read from internal registers. The PMIC only responds (ACK) to address 68H/69H.

BYTE BIT MSB 6 5 4 3 2 1 0 WRITE 0 1 0 1 0 0 0 **READ** 0 1 1 0 1 0 0 1 I/O DATA BUS В7 В6 **B5** В4 В3 B2 B0 **B1**

Table 9-46

Incremental Read:

The PMIC support incremental read operations in normal TWI mode. The address increases by 1 automatically.

10 Register

Note: hereinafter, "system reset" means that the Register will be reset when the PMIC power off, and "power on reset" means that the Register will be reset when IPSOUT voltage drop below 2.1V.

Register List

Table 10-1

Address	Description		Default
00	Power source status		
01	01 Power mode and Charger status		
02	Power up/down reason register	RW	
03	IC type number	R	51H
04-0F	12 Data buffers	RW	00H
10	Output power on-off control 1	RW	XXH
12	Output power on-off control 2	RW	08H
13	Output power on-off control 3	RW	9CH
14	On/Off synchronous control	RW	48H
15	DLDO1 voltage control	RW	16H
16	DLDO2 voltage control	RW	16H
17	DLDO3 voltage control	RW	16H
18	DLDO4 voltage control	RW	1AH
19	19 ELDO1 voltage control		00H
1A	1A ELDO2 voltage control		00H
1B	1B ELDO3 voltage control		00H
1C	1C FLDO1 voltage control		ОВН
1D	FLDO2/3 voltage control	RW	ОВН
20	BUCK6 voltage control	RW	02H
21	BUCK5 voltage control	RW	B2H
22	Reserved	RW	XXH
23	BUCK1 voltage control		B2H
24	24 BUCK4 voltage control		XXH
25	25 BUCK3 voltage control		B2H
26	BUCK2 voltage control		B2H
27	BUCK1/2/3/4/5 DVM control	RW	ХСН
28	28 ALDO1 voltage control		17H

AXP288

PMIC Optimized For Multi-Core High-Performance System

Address	Description	R/W	Default
29	ALDO2 voltage control	RW	17H
2A	ALDO3 voltage control	RW	1AH
2C	2C BC Module Global Register		00H
2D	BC Module VBUS Control and Status Register	RW	30H
2E	BC USB Status Register	RW	00H
2F	BC Detect Status Register	R	20H
30	VBUS path control & Hold voltage setting	RW	21H
31	Power wakeup control & V _{OFF} setting	RW	03H
32	Power Disable, BAT detect and CHGLED pin control	RW	4XH
33	Charger Control 1	RW	СХН
34	Charger Control 2	RW	45H
35	Charger Control 3	RW	18H
36	POK setting	RW	59H
37	POK Power off activity time setting	RW	00H
38	V _{LTF-charge} setting	RW	A5H
39	V _{HTF-charge} setting	RW	1FH
3A	Reserved	RW	ххн
3B	BUCK frequency setting	RW	08H
3C	$V_{LTF-work}$ setting	RW	FCH
3D	$V_{HTF-work}$ setting	RW	16H
3E	Reserved		XXH
40	IRQ enable 1	RW	D8H
41	IRQ enable 2	RW	FFH
42	IRQ enable 3	RW	FFH
43	IRQ enable 4	RW	03H
44	IRQ enable 5	RW	7CH
45	IRQ enable 6	RW	00H
48	IRQ Status 1	RW	00H
49	IRQ Status 2	RW	00Н
4A	IRQ Status 3	RW	00H
4B	IRQ Status 4	RW	00Н
4C	IRQ Status 5	RW	00H
4D	IRQ Status 6	R	00H
58	TS pin input ADC data, highest 8bit	R	00H
59	TS pin input ADC data, lowest 8bit	R	00H
5A	GPIO0 pin input ADC data, highest 8bit	R	00H
5B	GPIO0 pin input ADC data, lowest 8bit	R	00H

AXP288

PMIC Optimized For Multi-Core High-Performance System

Address	Description	R/W	Default
78	Average data bit[11:4] for Battery voltage (BATSENSE)	R	00H
79	Average data bit[3:0] for Battery voltage (BATSENSE)	R	00H
7A	Average data bit[11:4] for Battery charge current	R	00H
7B	Average data bit[3:0] for Battery charge current	R	00H
7C	Average data for Battery discharge current highest 8 bit	R	00H
7D	Average data for Battery discharge current lowest 4 bit	R	00H
80	BUCK PWM/PFM mode select	RW	80H
81	Off-Discharge and Output monitor control	RW	FFH
82	ADC Enable	RW	E1H
84	ADC speed setting, TS pin Control	RW	F2H
85	ADC speed setting	RW	вон
8A	Timer control	RW	00H
8E	Buck output voltage monitor de-bounce time setting	RW	00H/00H/40H
8F	IRQ pin, hot-over shut down	RW	00H
90	GPIO0(GPADC) control	RW	07H
91	GPIO0LDO and GPIO0 high level voltage setting	RW	1AH
92	GPIO1 control	RW	07H
93	GPIO1LDO and GPIO1 high level voltage setting	RW	1AH
94	GPIO signal bit	R	00H
97	GPIO pull down control	RW	00H
9A	Run time Sleep power up sequence 1	RW	00H
9B	Run time Sleep power up sequence 2	RW	00H
9C	Run time Sleep power down sequence 1	RW	00H
9D	Run time Sleep power down sequence 2	RW	00H
9E	Power rail mode in Sleep state	RW	00H
A0	Real time data bit[11:4] for Battery voltage (BATSENSE)	R	00H
A1	Real time data bit[3:0] for Battery voltage (BATSENSE)	R	00H
B8	Fuel Gauge Control	RW	E8H
В9	Battery capacity percentage for indication	R	64H
ВА	RDC 1	RW	80H
ВВ	RDC 0	RW	5DH
ВС	OCV 1	R	00H
BD	OCV 0	R	хон
EO	Battery maximum capacity	RW	00H
E1	Battery maximum capacity	RW	00H
E2	Coulomb meter counter	RW	00H
E3	Coulomb meter counter	RW	00H

E4	OCV Percentage of battery capacity		64H
E5	Coulomb meter percentage of battery capacity	R	64H
Address	Description	R/W	Default
E6	Battery capacity percentage warning level	RW	АОН
E8	E8 Fuel gauge tuning control 0		00H
E9	E9 Fuel gauge tuning control 1		00Н
EA	Fuel gauge tuning control 2		00Н
EB	Fuel gauge tuning control 3	RW	00H
EC	Fuel gauge tuning control 4	RW	00H
ED	Fuel gauge tuning control 5	RW	00H

REG 00H: Power source status

Table 10-2

Bit	Description	R/W
7	Reserved	R
6	Reserved	R
5	VBUS presence indication	R
	0- VBUS not presence (VBUS<3.5V)	
	1- VBUS presence (VBUS>4.1V)	
4	Indication of VBUS valid (VBUS_Val)	R
3	VBAT>3.5V or not	R
2	Indication Battery current direction	R
	0: Battery discharge	
	1: Charging battery	
1	Reserved	R
0	STARTUP_TRIGGER: indicate the startup trigger is VBUS or not	R
C	0: startup trigger is not VBUS; 1: startup trigger is VBUS	

REG 01H: Power mode and Charger status

Table 10-3

Bit	Description	R/W
7	Indication PMIC die over temperature or not	R
	0-not over temperature; 1-over temperature	
6	Charging indication	R

	0-Charger is not charging or charging is done; 1-Charger is charging	
5	Battery presence indication	R
	0-No Battery is connected to AXP288; 1-Battery is connected	
4	REG 01H[5] valid flag	R
	0- REG 01H[5] is invalid	
	1- REG 01H[5] is valid	
	Indicate whether Battery detected or not yet	
3	Indicate battery safe mode	R
	O-charger is not in battery safe mode; 1-charger is in battery safe mode	
2:0	Reserved	R

REG 02H: Power up/down reason register

Reset: Power on reset

Table 10-4

Bit	Description		Default
7	Power on key override was the shutdown reason, write $1\ \mathrm{to}\ \mathrm{clear}$	R/W	0
6	SOC initiated cold off was the shutdown reason, write 1 to clear	R/W	0
5	PMIC UVLO threshold was the shutdown reason, write 1 to clear	R/W	0
4	Cold reset was the start up reason, write 1 to clear	R/W	0
3	SOC initiated Global Reset was the start up reason,		0
	write 1 to clear		
2	Battery insertion was the start up reason, write 1 to clear,	R/W	0
	write 1 to clear		
1	Charger insertion was the start up reason, write 1 to clear	R/W	0
0	Power on key was the start up reason, write 1 to clear	R/W	0

REG 03H: IC type no.

Default: 51H

Table 10-5

Bit	Description	R/W
5-4	Reserved	R
7-6	IC type No.	R
&	010001: IC is AXP288	
3-0	Others: Reserved	

REG 04-0FH: 12 Data buffers

Default: 00H

Reset: Power on reset

Note: As long as one of the external powers, batteries or backup batteries exists, this data will be reserved and free from the startup and shutdown influence.

REG 10H: Output power on-off control 1

Default: XXH

Reset: system reset

Table 10-6

Bit	Description		R/W	Default
7	Reserved			
6	BUCK2 on-off control	0-off; 1-on	RW	1
5	BUCK3 on-off control	0-off; 1-on	RW	1
4	BUCK4 on-off control	0-off; 1-on	RW	1
3	BUCK1 on-off control	0-off; 1-on	RW	1
2	Reserved			
1	BUCK5 on-off control	0-off; 1-on	RW	1
0	BUCK6 on-off control	0-off; 1-on	RW	1

REG 12H: Output power on-off control 2

Default: 08H

Reset: system reset

Table 10-7

Bit	Description		R/W	Default
7	Reserved			
6	DLDO4 on-off control	0-off; 1-on	RW	0
5	DLDO3 on-off control	0-off; 1-on	RW	0
4	DLDO2 on-off control	0-off; 1-on	RW	0

3	DLDO1 on-off control	0-off; 1-on	RW	1
2	ELDO3 on-off control	0-off; 1-on	RW	0
1	ELDO2 on-off control	0-off; 1-on	RW	0
0	ELDO1 on-off control	0-off; 1-on	RW	0

REG 13H: Output power on-off control 3

Default: 9CH Reset: system reset

Table 10-8

Bit	Description		R/W	Default
7	ALDO3 on-off control	0-off; 1-on	RW	1
6	ALDO2 on-off control	0-off; 1-on	RW	0
5	ALDO1 on-off control	0-off; 1-on	RW	0
4	FLDO3 on-off control	0-off; 1-on	RW	1
3	FLDO2 on-off control	0-off; 1-on	RW	1
2	FLDO1 on-off control	0-off; 1-on	RW	1
1-0	Reserved			

REG 14H: On/Off synchronous control

Default: 48H Reset: system reset

Table 10-9

Bit	Description	R/W	Default
7	Global reset act as cold reset Enable bit	RW	0
	0:Disable		
	1:Enable		
	All power rails power down and then power up,64ms delay		
6	BUCK5 poly-phase control	RW	1
	0: no poly-phase		
	1: dual phase		
5	BUCK 3 & 4 change to poly-phase Buck	RW	0
	0: BUCK 3 & 4 is independent, not poly-phase Buck		
	1: BUCK 3 & 4 is poly-phase Buck		

			- , -	
4	Select the BUCK2/ 3 /5 Vrun register or Vsl	eep register	RW	0
	0:Vrun Register	0:Vrun Register		
	1:Vsleep Register			
3	If SLP_SOIX_B go high and PLTRST_B status	s is low for 512ms, PMIC will do a cold reset	RW	1
	or not (Reset: power on reset)			
	0: don't cold reset			
	1: do a cold reset			
2	Cold reset Enable set bit		RW	0
	0:Disable			
	1:Enable			
	All power rails power down and then pow	er up,64ms delay		
1	Power control register select	1-select buffer register, output value of	RW	0
		control register to buffer		
		0-select the control register		
0	Output buffer register value	1-outport to control register from buffer	RW	0
		Bit[1:0], self clear to 0 after output		

REG 15H: DLDO1 voltage control

Default: 16H

Reset: System reset

Table 10-10

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4-0	voltage setting Bit 4-0, default is 2.9V	RW	16H
	0.7V-3.3V, 100mV/step		

REG 16H: DLDO2 voltage control

Default: 16H

Reset: System reset

Table 10-11

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4-0	voltage setting Bit 4-0, default is 2.9V	RW	10110
	0.7V-3.4V, 100mV/step		

3.4V-4.2V, 200mV/step		

REG 17H: DLDO3 voltage control

Default: 16H

Reset: System reset

Table 10-12

Bit	Description		Default
7-5	Reserved	RW	000
4-0	voltage setting Bit 4-0, default is 2.9V	RW	10110
	0.7V-3.3V, 100mV/step		

REG 18H: DLDO4 voltage control

Default: 1AH

Reset: System reset

Table 10-13

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4-0	voltage setting Bit 4-0, default is 3.3V	RW	11010
	0.7V-3.3V, 100mV/step		

REG 19H: ELDO1 voltage control

Default: 00H (16H for AXP288D)

Reset: System reset

Table 10-14

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4-0	voltage setting Bit 4-0	RW	00000
	0.7-1.9V, 50mV/step		(10110 for
			AXP288D)

REG 1AH: ELDO2 voltage control

Default: 00H

Reset: System reset

Table 10-15

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4-0	voltage setting Bit 4-0	RW	00000
	0.7-1.9V, 50mV/step		

REG 1BH: ELDO3 voltage control

Default: 00H Reset: System reset

Table 10-16

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4-0	voltage setting Bit 4-0	RW	00000
	0.7-1.9V, 50mV/step		

REG 1CH: FLDO1 voltage control

Default: OBH

Reset: System reset

Table 10-17

Bit	Description	R/W	Default
7-4	Reserved	RW	000
3-0	voltage setting Bit 3-0, default is 1.25V	RW	ВН
	0.7-1.45V, 50mV/step		

REG 1DH: FLDO2/3 voltage control

Default: OBH

Reset: System reset

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4	FLDO3 voltage setting	RW	0
	0:BUCK4 / 2 1:FLDOIN/2		
3-0	FLDO2 voltage setting Bit 3-0, default is 1.25V	RW	ВН
	0.7-1.45V, 50mV/step		

REG 20H: BUCK6 voltage control

Default: 02H (11H for AXP288D)

Reset: System reset

Table 10-19

Bit	Description		Default
7-5	Reserved	RW	000
4-0	voltage setting Bit 4-0, 1.6-3.4V, 100mV/step, default is 1.8V	RW	02H
	(3.3V for AXP288D)		(11H for
			AXP288D)

REG 21H: BUCK5 voltage control

Default: B2H

Reset: System reset

Table 10-20

Bit	Description	R/W	Default
7	DVM finished or not status bit	R	1
	0: not finished 1: finished		
6-0	voltage setting Bit 6-0, default is 1.0V	RW	32H
	0.50-1.20V: 10mV/step		
	1.22-1.30V: 20mV/step		

REG 22H: Reserved

Default: XXH

Reset: System reset AXP288 Datasheet V1.06

Table 10-21

Bit	Description	R/W	Default
7-0	Reserved	RW	00

REG 23H: BUCK1 voltage control

Default: B2H Reset: System reset

Table 10-22

Bit	Description	R/W	Default
7	DVM finished or not status bit	R	1
	0: not finished 1: finished		
6-0	voltage setting Bit 6-0, default is 1.0V	RW	32H
	0.50-1.20V: 10mV/step 1.22-1.30V: 20mV/step		

REG 24H: BUCK4 voltage control

Default: XXH

Reset: System reset

Table 10-23

Bit	Description	R/W	De	fault		
7	DVM finished or not status bit	R		1		
	0: not finished 1: finished					
6-0	voltage setting Bit 6-0	RW	BUCK4SET is tied to :	GND	VINT	Floating
	0.80-1.12V: 10mV/step		Type 0	1.5V	1.36V	1.24V
	1.14-1.84V: 20mV/step		Type 1	0.9V	1.8V	1.0V

Note: type 0 or 1 set by OTP

REG 25H: BUCK3 voltage control

Default: A8H

Reset: System reset

Table 10-24

Bit	Description	R/W	Default
7	DVM finished or not status bit	R	1
	0: not finished 1: finished		

6-0	voltage setting Bit 6-0, default is 1.0V	RW	28H
	0.60-1.10V: 10mV/step		
	1.12-1.52V: 20mV/step		

REG 26H: BUCK2 voltage control

Default: A8H Reset: System reset

Table 10-25

Bit	Description	R/W	Default
7	DVM finished or not status bit	R	1
	0: not finished 1: finished		
6-0	voltage setting Bit 6-0, default is 1.0V	RW	28H
	0.60-1.10V: 10mV/step		
	1.12-1.52V: 20mV/step		

REG 27H: BUCK1 /2 /3 /4 /5 DVM control

Default: XCH

Reset: System reset

Table 10-26

Bit	Description	R/W	Default
7	BUCK2 DVM on-off control	RW	1
	0: disable; 1: enable		
6	BUCK3 DVM on-off control	RW	1
	0: disable; 1: enable		
5	BUCK4 DVM on-off control	RW	1
	0: disable; 1: enable		
4	BUCK1 DVM on-off control	RW	1
	0: disable; 1: enable		
3	Reserved		
2	BUCK5 DVM on-off control	RW	1
	0: disable; 1: enable		
1	RSMRST_B drive low when ALDO3 less than 85% or not control	RW	0
	0: not drive low; 1: drive low		

0	DRAMPWROK drive low when FLDO3 less than 85% or not control	RW	0
	0: not drive low; 1: drive low		

REG 28H: ALDO1 voltage control

Default: 17H

Reset: System reset

Table 10-27

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4-0	voltage setting Bit 4-0	RW	10111
	0.7-3.3V, 100mV/step, default is 3.0V		

REG 29H: ALDO2 voltage control

Default: 17H

Reset: System reset

Table 10-28

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4-0	voltage setting Bit 4-0, default is 3.0V		10111
	0.7-3.3V, 100mV/step		

REG 2AH: ALDO3 voltage control

Default: 1AH

Reset: System reset

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4-0	voltage setting Bit 4-0, default is 3.3V		1AH
	0.7-3.3V, 100mV/step		

REG 2CH: BC Module Global Register

Default: 00H

Reset: bit7 is system reset, bit[6:0] Power On reset

Table 10-30

Bit	Description	R/W	Default	
	DCD_SEL			
	DCD Detect Select			
7	Software writes 1 to this bit to select DCD Detection during BC Detect.	RW	0	
	DCD_TIMEOUT_CTL			
	DCD Timeout Control			
	Software writes these fields to configure the DCD timeout value.			
	When the DCD_SEL is set, the BC Module read the MultValldBc if pin contact has been			
	detected or the time defined on these fields has been expired .			
	When the DCD_SEL is not set, he BC Module read the MultValldBc if the time defined on			
	these fields has been expired .			
	00: 300ms 01: 100ms			
6-5	10: 500ms 11: 900ms	RW	0	
	Vlgc_Com_Sel			
	VIgc Compare Select			
	Software writes 1 to this bit to choose the Vlgc compare during Primary Detect when the ID			
	pin is float.			
	When this bit is set, the BC Module is optionally allowed to compare D- with Vlgc beside the			
	Vdp_src comparing. The BC Module determine that it is attached to a DCP or CDP if D- is			
	greater than Vdat_ref, but less than Vlgc. Otherwise, the BC Module determine that it is			
4	attached to a SDP, which may actually be a SDP, or a PS2 port, or a proprietary charge.	RW	0	
	DBP_Timeout_CTL			
	DBP Hardware Timeout Control			
	If this bit is set, the BC Module would clear the DB_Perform bit on the BC_USB_Sta_R			
	register after TsvId_con_wkb when the DB_Perform bit is set.			
3	Note: Tsvld_con_wkb = 45min	RW	0	
	BC_status			
	BC Detection status			
	Detection finish or not			
	1:Detecting, when starting BC Detect, set this bit			
2	0:Detect finish	RW	0	
1	Reserved	RW	0	
0	RS	RW	0	

Run/Stop	
Software writes 1 to this bit to start the BC Module operation. A transition from a zero to a	
one would cause the reset on the BC Module logic.	
If this bit = 1,when VBUS low go high, BC detection start automatically	

REG 2DH: BC Module VBUS Control and Status Register

Default: 30H

Reset: Power On reset

Table 10-31

Bit	Description	R/W	Default
7	Reserved		0
	Indicate the first power on status		
	Software write 1 to this bit to indicate not first time power on		
	If Battery not present, and this bit is 0,the VBUS current limit set to 3A,for the F/W update in		
6	factory	RW	0
	DP/DM floating Detection enable		
	0:disable		
5	1:enable	RW	1
	DP/DM pull down enable		
	0:disable		
4	1:enable	RW	1
	RID detect enable		
	0:disable		
	1:enable		
	1,VBUS presence and REG_2C[0]=1,RID was enabled automatically,do not depend on this bit;		
3	2,VBUS presence or in power on state,set this bit to 1 will enable RID detect	RW	0
2-0	Reserved	RW	0

REG 2EH: BC USB Status Register

Default: 40H

Reset: Reset by the VBUS negative edge

Table 10-32

Bit	Description	R/W	Default
	DB_Perform		
	Dead Battery Perform		
7	Both BC Module and software write 1 to this bit to perform unconfig DBP clause and clean it to 0 to	RW	0

	stop the unconfig DBP clause.		-
	Dead battery detect enable bit (Reset: power on reset)		
	0:disable		
6	1:enable	RW	1
5	Reserved		
	USB_Mode		
	USB Speed Mode Flag		
	This bit is used in good battery state. It is set by the USB driver to indicate the USB speed mode for		
	the power manage.		
	0: High-Speed, Full-Speed or Low-Speed Mode		
4	1: Super-Speed Mode	RW	0
	Dev_Bus_State		
	Device Bus State Flag		
	These fields are used in good battery state. They are set by the USB driver to indicate the USB bus		
	state for the power manage.		
	000b: attached, physical signal pin contact		
	001b: connected, attached and when the downstream terminal is valid		
	010b: suspended		
	011b: configured		
3-0	100b-111b: reserved	RW	0

REG 2FH: BC Detect Status Register

Default: 20H

Reset: Reset by the VBUS negedge

Table 10-33

Bit		10	Description		R/W	Default
	BC_Result	·				
	BC Detect	Result				
	These field	ds indicate the r	esult of BC Detect performance. These fields sho	ould be used by the BC		
	Module w	nen the BC_Per b	oit of the BC_GLOBAL_R register transaction from	1 to 0.		
	Value	Meaning	Descriptor			
	000b	Reserved	/			
	001b	SDP	The insert port is Standard Downstream Port			
	010b	CDP	The insert port is Charging Downstream Port			
	011b	DCP	The insert port is Dedicated Charging Port			
7-5	100b	Reserved	/		R	001

4-0)	Reserved			R	00000
		111b	Reserved	/		
		110b	Reserved	/		
		101b	Reserved	/		

REG 30H: VBUS path control & Hold voltage setting

Default: 21H

Reset: Bit [7] & bit [2] reset signal is System reset, and Bit [6:3] & bit [1:0] reset signal is Power on reset

Table 10-34

	Tubi			
Bit	Description		R/W	Default
7	VBUS path select control (VBUS_SEL) when VBUS va	alid	RW	0
	0: VBUS path select ed			
	1: VBUS path Not selected			
6	Reserved			
5	V _{HOLD} setting bit 2 000: 4.0V; 001: 4.1V; 010: 4.2V		RW	1
4	V _{HOLD} setting bit 1 011: 4.3V; 100: 4.4V; 101: 4.5V		RW	0
3	V _{HOLD} setting bit 0	110: 4.6V; 111: 4.7V	RW	0
2	Reserved		RW	0
1-0	Current limit default when BC1.2 detection result is	s non SDP :	RW	01
	00: 900mA			
	01: 1500mA			
	10: 2000mA			
	11: 2500mA			

REG 31H: Power wakeup control & V_{OFF} setting

Default: 03H

Reset: Bit 3 reset signal is system reset, Bit [7-4] and Bit [2-0] reset signal is Power on reset

Table 10-35

Bit	Description	R/W	Default
7	PWROK drive low or not when Power wake up and REG 31_[3]=1	RW	0
	0: not drive low 1: drive low in wake up period		
6	Reserved	RW	0
5	Soft Power wakeup, Write 1 to this bit, the output power will be waked up, then this bit		0
	will clear itself		
4	Control bit for IRQ output and wakeup trigger when REG 31_[3] is 1	RW	0

	0: IRQ pin is masked and IRQ can wakeup AW1660 when REG 31_[3] is 1			
	1: IRQ pin is normal and IRQ can't wakeup AW1	660 when REG 31_[3] is 1		
3	Enable bit for the function that output power be waked up by IRQ source, or IRQ pin, or		RW	0
	REG 31_[5], etc. write 1 to this bit will clear itself			
	0: function is disable			
	1: function is enable			
2	V _{OFF} setting bit 2	000-2.6V; 001-2.7V; 010-2.8V;	RW	0
1	V _{OFF} setting bit 1	011-2.9V; 100-3.0V; 101-3.1V;	RW	1
0	V _{OFF} setting bit 0	110-3.2V; 111-3.3V	RW	1

REG 32H: Power Disable, BAT detect and CHGLED pin control

Default: 4XH

Reset: Bit 7 reset signal is system reset, and Bit [6:0] reset signal is Power on reset

Table 10-36

Bit	Description	on	R/W	Default
7	Reserved			
6	Battery detection function control: 0-disable; 1	-enable	RW	1
5-4	CHGLED pin control	00: Hi-Z	RW	00
		01: 25% 0.5Hz toggle		
	. X	10: 25% 2Hz toggle		
		11: drive low		
3	CHGLED pin control	0: controlled by REG 32H[5:4]	RW	0
	~/ 0,	1: controlled by Charger		
2	Reserved		RW	0
1-0	control bit for Delay time between PWROK signal and power good time		RW	11
	00: 8ms; 01: 16ms; 10: 32ms; 11: 64ms			

REG 33H: Charger Control 1

Default: CXH

Reset: Bit [7] reset is system reset, Bit [6:0] reset is power on reset

Bit	Description	R/W	Default
7	Charger enable control		1
	0-disable, 1-enable		
6-5	Charger target voltage setting		10
	00: 4.10V; 01: 4.15V; 10: 4.2V; 11: 4.35V		

4	Charger end condition setting:	RW	0	
	0-when I _{CHARGE} <10% I _{CHG} ,Charge is done;			
	1-when I _{CHARGE} <20% I _{CHG} , Charge is done;			
3-0	Charge Current setting	RW	Х	
	200mA-2.8A, 200mA/step, default is 1200mA, 14steps, 1110-1111 reserved.			

REG 34H: Charger Control 2

Default: 45H

Reset: Power on reset

Table 10-38

Bit	Descr	iption	R/W	Default
7	Pre-charge Timer length setting 1	00: 40 minutes; 01: 50 minutes;	RW	0
6	Pre-charge Timer length setting 0	10: 60 minutes; 11: 70 minutes.	RW	1
5	Charger output turn off or not when charging is end & the PMIC is on state		RW	0
	0: turn off; 1: do not turn off			
4	CHGLED Type select when REG 32_[3] is 1		RW	0
	0: Type A; 1: Type B			
3	reserved		RW	0
2	reserved		RW	1
1	Fast charge maximum time setting 1 00: 6 hours; 01: 8 hours;		RW	0
0	Fast charge maximum time setting 0	10: 10 hours; 11: 12 hours.	RW	1

REG 35H: Charger Control 3

Default: 18H

Reset: [7:4] is VBUS negedge reset , others Power on reset

Table 10-39

Bit	Description	R/W	Default
7-4	VBUS current limit select when VBUS Current limited mode is enable	RW	0001
	0000-100mA 0001-500mA 0010-900mA 0011-1500mA		
	0100-2000mA 0101-2500mA 0110-3000mA 0111-3500mA		
	1xxx-4000mA		
3	Charger temperature loop enable	RW	1
	0: disable 1:enable		
2-0	Reserved		

REG 36H: POK setting

Default: 59H

Reset: Bit 3 is reset by system reset, the others is reset by Power on reset

Table 10-40

Bit	Description		R/W	Default
7	ONLEVEL setting 1	00: 128ms; 01: 1s;	RW	0
6	ONLEVEL setting 0	10: 2s; 11: 3s.	RW	1
5	IRQLEVEL setting 1	00: 1s; 01: 1.5s;	RW	0
4	IRQLEVEL setting 0	10: 2s; 11: 2.5s.	RW	1
3	Enable bit of the function which will shut down the PMIC when POK is larger		RW	1
	than OFFLEVEL	νΩ		
	0-disable; 1-enable			
2	The PMIC auto turn on or not when it shut down	after off level POK	RW	0
	0: not turn on; 1: auto turn on			
1	OFFLEVEL setting 1	00: 4s; 01: 6s;	RW	0
0	OFFLEVEL setting 0	10: 8s; 11: 10s.	RW	1

REG 37H: POK Power off activity time setting

Default: 00H

Reset: Power on reset

Table 10-41

Bit	Description	R/W	Default
7-3	Reserved		
2-0	Power off activity time setting	R/W	000
	0/10/20/30/40/50/60/70 S		

REG 38H: V_{LTF-charge} setting

Default: A5H

Bit		Description	R/W	Default
7-0	V _{LTF-charge} setting, M	M*10H, M=A5H:2.112V;range is 0V-3.264V	RW	A5H

REG 39H: $V_{\text{HTF-charge}}$ setting

Default: 1FH

Reset: Power on reset

Table 10-42

Bit		Description	R/W	Default
7-0	V _{LHF-charge} setting, N	N*10H, N=1FH:0.397V;range is 0V-3.264V	RW	1FH

REG 3AH: Reserved

Default: XXH

Reset: Power on reset, bit7 is system reset

Table 10-43

Bit	Description	R/W	Default
7-0	Reserved		

REG 3BH: Buck frequency setting

Default: 08H

Reset: Power on reset

Table 10-44

Bit	Description		R/W	Default
7	Buck and PWM charger frequency spread	d enable	RW	0
	0: disable; 1: enable			
6	Buck and PWM charger frequency spread	d range control	RW	0
	0: 50KHz; 1: 100KHz			
5	Reserved			
4	BUCK1/5 mode select		RW	0
	0:Always PWM 1:PSM/PWM Auto sv	vitch		
3-0	Buck frequency setting bit 3-0	f _{OSC} : 3MHz *(1+ (8-N) *0.04)	RW	1000
	N=08: 3MHz			
		Every step f _{osc} error is ±5%		

REG 3CH: V_{LTF-work} setting

Default: FCH

Reset: Power on reset

Table 10-45

Bit		Description	R/W	Default
7-0	V _{LTF-work} setting, M	M*10H,M=FCH:3.226V;range is 0V-3.264V	RW	FCH

REG 3DH: V_{HTF-work} setting

Default: 16H

Reset: Power on reset

Table 10-46

Bit		Description	R/W	Default
7-0	V _{HTF-work} setting, N	N*10H,N=16H:0.282V;range is 0V-3.264V	RW	16H

REG 40H: IRQ enable 1

Default: D8H

Reset: Power on reset

Table 10-48

Bit	Description	R/W	Default
7	Same as bit4	RW	1
6	Same as bit3	RW	1
5	Same as bit2	RW	0
4	VBUS over voltage IRQ enable	RW	1
3	VBUS from low go high IRQ enable	RW	1
2	VBUS from high go low IRQ enable	RW	0
1-0	Reserved		

REG 41H: IRQ enable 2

Default: FFH

Table 10-49

Bit	Description	R/W	Default
7	Battery append IRQ enable	RW	1
6	Battery absent IRQ enable	RW	1
5	Battery maybe bad IRQ enable	RW	1

4	Quit battery safe mode IRQ enable	RW	1
3	Charger is charging IRQ enable	RW	1
2	Battery charge done IRQ enable	RW	1
1-0	Reserved		

REG 42H: IRQ enable 3

Default: FFH

Reset: Power on reset

Table 10-50

Bit	Description	R/W	Default
7	Battery over temperature in charge mode IRQ (CBTOIRQ) enable	RW	1
6	Quit Battery over temperature in charge mode IRQ (QCBTOIRQ) enable	RW	1
5	Battery under temperature in charge mode IRQ (CBTUIRQ) enable	RW	1
4	Quit Battery under temperature in charge mode IRQ (QCBTUIRQ) enable	RW	1
3	Battery over temperature in work mode IRQ (WBTOIRQ) enable	RW	1
2	Quit Battery over temperature in work mode IRQ (QWBTOIRQ) enable	RW	1
1	Battery under temperature in work mode IRQ (WBTUIRQ) enable	RW	1
0	Quit Battery under temperature in work mode IRQ (QWBTUIRQ) enable	RW	1

REG 43H: IRQ enable 4

Default: 03H

Reset: Power on reset

Table 10-51

Bit	Description	R/W	Default
7	The PMIC temperature over the warning level 2 IRQ (OTIRQ) enable	RW	0
6-3	Reserved		
2	GPADC(GPIO0) ADC convert finished IRQ enable	RW	0
1	Enable bit for IRQ which indicate battery capacity ratio being lower than warning level	RW	1
	1, (WL1IRQ); normally, for low power warning requisition		
0	Enable bit for IRQ which indicate battery capacity ratio being lower than warning level	RW	1
	2, (WL2IRQ); normally, for power off requisition		

REG 44H: IRQ enable 5

Default: 7CH

Reset: System reset

Table 10-52

Bit	Description	R/W	Default
7	Event timer timeout IRQ enable	RW	0
6	POK positive edge IRQ (POKPIRQ) enable	RW	1
5	POK negative edge IRQ (POKNIRQ) enable	RW	1
4	POK short time active IRQ (POKSIRQ) enable	RW	1
3	POK long time active IRQ (POKLIRQ) enable	RW	1
2	POK off time active IRQ (POKOIRQ) enable	RW	1
1	GPIO1 input edge IRQ enable	RW	0
0	GPIO0 input edge IRQ enable	RW	0

REG 45H: IRQ enable 6

Default: 00H

Reset: System reset

Table 10-53

Bit	Description	R/W	Default
7-2	Reserved		
	BC_USB_ChngInEn	RW	0
	BC USB Status Change Interrupt Enable		
	BC_USB_ChngEvnt Interrupt Enable.		
1	BC Detection result changed or not		
	MV_ChngIntEn	RW	0
0	Rid MV_ChngEvnt Interrupt Enable.		

REG 48H: IRQ Status 1

Default: 00H

Table 10-54

Bit	Description	R/W	Default
7	Same as bit4, write 1 to it or VBUS drop to normal will clear it	RW	0
6	Same as bit3, write 1 to it or VBUS from high go low will clear it	RW	0
5	Same as bit2, write 1 to it or VBUS from low go high will clear it	RW	0
4	VBUS over voltage IRQ, write 1 to it or VBUS drop to normal will clear it	RW	0

AXP288

PMIC Optimized For Multi-Core High-Performance System

3	VBUS from low go high IRQ, write 1 to it or VBUS from high go low will clear it	RW	0
2	VBUS from high go low IRQ, write 1 to it or VBUS from low go high will clear it	RW	0
1-0	Reserved	RW	0

REG 49H: IRQ Status 2

Default: 00H

Reset: power on reset

Table 10-55

Bit	Description	R/W	Default
7	Battery append IRQ, write 1 to it or Battery remove will clear it	RW	0
6	Battery absent IRQ, write 1 to it or Battery append will clear it	RW	0
5	Battery maybe bad IRQ, write 1 to it or PMIC quit battery safe mode will clear it	RW	0
4	Quit battery safe mode IRQ, write 1 to it or The PMIC enter battery- safe mode will clear it	RW	0
3	Charger is charging IRQ, write 1 to it or charging is stop will clear it	RW	0
2	Battery charge done IRQ, write 1 to it or charger restart charging will clear it	RW	0
1-0	Reserved		

REG 4AH: IRQ Status 3

Default: 00H

Reset: power on reset

Table 10-56

Bit	Description	R/W	Default
7	CBTOIRQ, write 1 to it or Battery temperature drop to normal will clear it	RW	0
6	QCBTOIRQ, write 1 to it or Battery over temperature will clear it	RW	0
5	CBTUIRQ, write 1 to it or Battery temperature rise to normal will clear it	RW	0
4	QCBTUIRQ, write 1 to it or Battery under temperature will clear it	RW	0
3	WBTOIRQ, write 1 to it or Battery drop to temperature will clear it	RW	0
2	QWBTOIRQ, write 1 to it or Battery over temperature will clear it	RW	0
1	WBTUIRQ, write 1 to it or Battery rise to temperature will clear it	RW	0
0	QWBTUIRQ, write 1 to it or Battery under temperature will clear it	RW	0

REG 4BH: IRQ Status 4

Default: 00H

Reset: Bit [7] reset is power on reset, Bit [6:0] reset is system reset

Table 10-57

Bit	Description	R/W	Default
7	OTIRQ, write 1 to it or IC temperature drop to normal will clear it	RW	0
6-3	Reserved	RW	0
2	GPADC(GPIO0) ADC convert finished IRQ, write 1 will clear it	RW	0
1	IRQ which indicate battery capacity ratio being lower than warning level 1, (WL1IRQ); write 1 to it	RW	0
	or system power rise up to warning level 1 will clear it		
0	IRQ which indicate battery capacity ratio being lower than warning level 2, (WL2IRQ); write 1 to it	RW	0
	or system power rise up to warning level 2 will clear it		

REG 4CH: IRQ Status 5

Default: 00H

Reset: System reset

Table 10-58

Bit	Description	R/W	Default
7	Event timer timeout IRQ, write 1 will clear it	RW	0
6	POKPIRQ, write 1 to it will clear it	RW	0
5	POKNIRQ, write 1 to it will clear it	RW	0
4	POKSIRQ, write 1 to it will clear it	RW	0
3	POKLIRQ, write 1 to it will clear it	RW	0
2	POKOIRQ, write 1 to it will clear it	RW	0
1	GPIO1 input edge IRQ, write 1 will clear it	RW	0
0	GPIO0 input edge IRQ, write 1 will clear it	RW	0

REG 4DH: IRQ Status 6

Default: 00H

Reset: Reset by VBUS negedge

Table 10-59

Bit	Description	R/W	Default
7-2	Reserved		
	BC_USB_ChngEvnt		
	BC USB Status Change Event		
	This bit indicates that there is a change in the BC_USB_Sta_R register.		
	When this bit is 1, and the interrupt on the BC_Charge_ChngInEn		
	is 1, the BC Module will issue an interrupt to the controller.		
1	This bit and associated interrupt is clean by writing '1'.	R	0

	MV_ChngEvnt			
	MultValIdBc Multi-Valued input changed Event			
	This bit indicates that there is a change in the value of MultValIdBc field.			
	When this bit is 1, and the interrupt on the MV_ChngIntEn is 1, the BC			
	Module will issue an interrupt to the controller.			
0	This bit and associated interrupt is clean by writing '1'.	R	0	

REG 58H: TS pin input ADC data, highest 8bit

Default: 00H Reset: System reset

Table 10-60

Bit	Description	R/W	Default
7-0	TS pin input ADC data highest 8bits,Default is Battery temperature	R	00

REG 59H: TS pin input ADC data, lowest 4bit

Default: 00H Reset: System reset

Table 10-61

Bit	Description	R/W	Default
7-4	Reserved	R	00
3-0	TS pin input ADC data lowest 4bits, Default is Battery temperature	R	00

REG 5AH: GPADC pin input ADC data, highest 8bit

Default: 00H Reset: System reset

Table 10-62

	Bit	Description	R/W	Default
Ī	7-0	GPADC pin input ADC data, highest 8bit	R	00

REG 5BH: GPADC pin input ADC data, lowest 4bit

Default: 00H

Reset: System reset

Table 10-63

Bit	Description	R/W	Default
7-4	Reserved	R	00
3-0	GPADC pin input ADC data, lowest 4bit	R	00

REG 78H: Average data bit[11:4] for Battery voltage (BATSENSE)

Default: 00H Reset: System reset

Table 10-64

Bit	Description	R/W	Default
7-0	Average data bit[11:4] for Battery voltage (BATSENSE)	R	00

REG 79H: Average data bit[3:0] for Battery voltage (BATSENSE)

Default: 00H

Reset: System reset

Table 10-65

Bit	Description	R/W	Default
7-4	Reserved	R	00
3-0	Average data bit[3:0] for Battery voltage (BATSENSE)	R	00

REG 7AH: Average data bit[11:4] for Battery charge current

Default: 00H

Reset: System reset

Table 10-66

Bit	Description	R/W	Default
7-0	Average data bit[11:4] for Battery charge current	R	00

REG 7BH: Average data bit[3:0] for Battery charge current

Default: 00H

Reset: System reset

Table 10-67

Bit	Description	R/W	Default
7-4	Reserved	R	00

3-0	Average data bit[3:0] for Battery charge current	R	00	

REG 7CH: Average data bit[11:4] for Battery discharge current

Default: 00H

Reset: System reset

Table 10-68

Bit	Description	R/W	Default
7-0	Average data bit[11:4] for Battery discharge current	R	00

REG 7DH: Average data bit[3:0] for Battery discharge current

Default: 00H

Reset: System reset

Table 10-69

Bit	Description	R/W	Default
7-4	Reserved	R	00
3-0	Average data bit[3:0] for Battery discharge current	R	00

REG 80H: Buck PWM/PFM mode select

Default: 80H

Reset: system reset

Table 10-70

Bit	Description		R/W	Default
7	BUCK output over voltage turn off PMIC function enable:		R/W	1
	0-disable; 1-enable			
	Suggest set this bit to 0 when performing Vrun going down to Vsleep			
	BUCK1/BUCK5	BUCK1/BUCK5 0.5~1.13V, 33.3%; 1.14~1.3V, 25%		
	BUCK2/BUCK3	0.6~1.36V, 33.3%; 1.37~1.52V, 25%		
	BUCK4	0.8~1.11V, 33.3%; 1.12~1.43V, 29%; 1.44~1.84V, 21.2%		
	BUCK6	1.6~2.3V, 21%; 2.4~3.1V, 17.6%; 3.2~3.4V, 11%		
6	BUCK2 PFM/PWN	л control: 0: auto switch 1: always PWM	RW	0
5	BUCK3 PFM/PWN	A control: 0: auto switch 1: always PWM	RW	0
4	BUCK4 PFM/PWN	A control: 0: auto switch 1: always PWM	RW	0
3	BUCK1 PFM/PWN	A control: 0: auto switch 1: PSM/PWM	RW	0
	When this bit is s	et as '1', refer to REG3B bit [4] for BUCK mode select		

2	Reserved		0	Ì
1	BUCK5 PFM/PWM control: 0: auto switch 1: PSM/PWM	RW	0	Ì
	When this bit is set as '1', refer to REG3B bit [4] for BUCK mode select			İ
0	BUCK6 PFM/PWM control: 0: auto switch 1: always PWM	RW	0	Ì

REG 81H: Off-Discharge and Output monitor control

Default: 80H

Reset: Power on reset

Table 10-71

Bit	Description	R/W	Default
7	Internal off-Discharge enable for Buck & LDO	RW	1
	0-disable; 1-enable		
6	BUCK2 85% Low voltage turn off PMIC function enable:	RW	0
	0-disable; 1-enable;		
5	BUCK3 85% Low voltage turn off PMIC function enable:	RW	0
	0-disable; 1-enable;		
4	BUCK4 85% Low voltage turn off PMIC function enable:	RW	0
	0-disable; 1-enable;		
3	BUCK1 85% Low voltage turn off PMIC function enable:	RW	0
	0-disable; 1-enable;		
2	Reserved		
1	BUCK5 85% Low voltage turn off PMIC function enable:	RW	0
	0-disable; 1-enable;		
0	BUCK6 85% Low voltage turn off PMIC function enable:	RW	0
	0-disable; 1-enable;		

REG 82H: ADC Enable

Default: E1H

Table 10-72

Bit	Description		R/W	Default
7	BAT voltage ADC enable	0: off, 1: on	RW	1
6	BAT current ADC enable	0: off, 1: on	RW	1
5	Die temperature ADC enable	0: off, 1: on	RW	1
4	GPIO0 ADC enable	0: off, 1: on	RW	0
3-1	Reserved			

	0	TS pin input to ADC enable	0: off, 1: on	RW	1	
--	---	----------------------------	---------------	----	---	--

REG 84H: ADC speed setting, TS pin Control

Default: F2H

Reset: power on reset

Table 10-73

Bit		Description	R/W	Default
7-6	Current source from G	GPIO0 pin control:	RW	11
	00: 20uA; 01: 40uA; 1	0: 60uA; 11: 80uA		
5-4	Current source from T	S pin control:	RW	11
	00: 20uA; 01: 40uA; 1	0: 60uA; 11: 80uA		
3	reserved		RW	0
2	TS pin function select:		RW	0
	0-TS pin is the battery temperature sensor input and will affect the charger			
	1-TS pin is an External input for ADC and do not affect the charger			
1-0	Current source	00: off	RW	10
	from TS pin on/off	01: on when charging battery, off when not charging		
	enable bit [1:0] 10: on in ADC phase and off when out of the ADC phase, for			
		power saving		
		11: always on		

REG 85H: ADC speed setting

Default: BOH

Table 10-74

Bit	Description	Description		Default
7	TS/GPIO0 ADC speed setting bit 1	100×2 ⁿ	RW	1
6	TS/GPIO0 ADC speed setting bit 0	So Fs=25, 50, 100, 200Hz	RW	0
5	Vol/Cur ADC speed setting bit 1	100×2 ⁿ	RW	1
4	Vol/Cur ADC speed setting bit 0	So Fs=100, 200, 400, 800Hz	RW	1
3	Reserved	Reserved		
2	GPIO0 ADC work mode		RW	0
	1:output current			
	0:not output current			
1-0	Reserved		RW	00

REG 8AH: Timer control

Default: 00H

Reset: System reset

Table 10-75

Bit	Description	R/W	Default
7	Timer time out status	RW	0
	It indicate that timer time out when this bit from low go high		
	Write this bit to 1, will clear the status and the timer		
6-0	Set threshold of the timer	RW	0000000
	Write these 7 bits to all 0, will disable the timer		

REG 8EH: Buck output voltage monitor de-bounce time setting

Default: 40H

Reset: Power on reset

Table 10-76

Bit	Description	R/W	Default
8E[7:6]	Buck output voltage monitor de-bounce time setting,	RW	01
	00-62us; 01-124us; 10-186us; 11-248us		
8E_[5:0]	Reserved	RW	00

REG 8FH: IRQ pin, hot-over shut down

Default: 00H

Table 10-77

Bit	Description	R/W	Default
7	Reserved	RW	0
6-4	Reserved		
3	The function control that 16s' POK trigger power on reset: 0-disable; 1-enable	RW	0
2	The PMIC shut down or not when Die temperature is over the warning level 3	RW	0
	0-not shut down; 1-shut down		
1	Voltage recovery enable bit when AXP288 wakeup from REG31H[3]=1	RW	0
	0: recovery to the vboot		
	1: not recovery to the vboot		
0	Reserved	RW	0

REG 90H: GPIO0 (GPADC) control

Default: 07H

Reset: system reset

Table 10-78

Bit		Description	R/W	Default
7	Enable GPIO0 Positive edge trigger IRQ o	r wake up when GPIOO is digital input	RW	0
	0: disable; 1: enable			
6	Enable GPIO0 Negative edge trigger IRQ	or wake up when GPIO0 is digital input	RW	0
	0: disable; 1: enable			
5-3	Reserved		RW	0
2	GPIO0 pin function control bit 2	000: drive low	RW	1
		001: drive high		
1	GPIO0 pin function control bit 1	010: digital input, trigger point is about 1.2V	RW	1
		011: low noise LDO on		
0	GPIO0 pin function control bit 0	100: low noise LDO off	RW	1
		101-111: Floating, if ADC enable, then work as		
		ADC input mode		

REG 91H: GPIO0LDO and GPIO0 high level voltage setting

Default: 1AH
Reset: system reset

Table 10-79

Bit	Description	R/W	Default
7-5	Reserved		
4-0	GPIOOLDO and GPIOO High level voltage setting bit 4-0	RW	11010
	From 0.7 to 3.3V, 100mV/step, 11011-11111 reserved		

REG 92H: GPIO1 control

Default: 07H Reset: system reset

Bit	Description	R/W	Default
7	Enable GPIO1 Positive edge trigger IRQ or wake up when GPIO1 is digital input	RW	0
	0: disable; 1: enable		

6	Enable GPIO1 Negative edge trigger IR	Q or wake up when GPIO1 is digital input	RW	0
	0: disable; 1: enable			
5-3	Reserved			
2	GPIO1 pin function control bit 2	000: drive low	RW	1
		001: drive high		
1	GPIO1 pin function control bit 1	010: digital input, trigger point is about 1.2V	RW	1
		011: low noise LDO on		
0	GPIO1 pin function control bit 0	100: low noise LDO off	RW	1
		101-111: Floating		

REG 93H: GPIO1LDO and GPIO1 high level voltage setting

Default: 1AH
Reset: system reset

Table 10-81

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4-0	GPIO1LDO and GPIO1 High level voltage setting bit 4-0	RW	11010
	From 0.7 to 3.3V, 100mV/step, 11011-11111 reserved		

REG 94H: GPIO signal bit

Default: 00H Reset: system reset

Table 10-82

Bit	Description	R/W	Default
7-2	Reserved		
1	This bit reflect the logic level of the GPIO1 pin when configured as digital input	R	0
0	This bit reflect the logic level of the GPIOO pin when configured as digital input	R	0

REG 97H: GPIO pull down control

Default: 00H Reset: system reset

Bit	Description	R/W	Default
7-2	Reserved		

1	GPIO1 Pull down control in digital input mode	RW	0
	0: off 1: on		
0	GPIO0 Pull down control in digital input mode	RW	0
	0: off 1: on		

REG 9AH: Run time Sleep power up sequence 1

Default: 00H

Reset: System reset

Table 10-84

Bit	Description	R/W	Default
7-5	When BUCK2 controlled by SLP_S0IX_B, the power up sequence setting bit2-0	RW	000
	000-100:5 steps		
4-2	When BUCK3 controlled by SLP_S0IX_B, the power up sequence setting bit2-0	RW	000
	000-100:5 steps		
1-0	When BUCK1 controlled by SLP_SOIX_B, the power up sequence setting bit2-1	RW	00
	000-100:5 steps		

REG 9BH: Run time Sleep power up sequence 2

Default: 00H

Reset: System reset

Table 10-85

Bit	Description	R/W	Default
7	When BUCK1 controlled by SLP_SOIX_B, the power up sequence setting bit0	RW	0
6-4	When BUCK5 controlled by SLP_SOIX_B, the power up sequence setting bit2-0	RW	000
	000-100:5 steps		
3-1	When FLDO1 controlled by SLP_SOIX_B, the power up sequence setting bit2-0	RW	000
	000-100:5 steps		
0	When BUCK2 controlled by SLP_SOIX_B, the power down sequence setting bit2	RW	0

REG 9CH: Run time Sleep power down sequence 1

Default: 00H

Reset: System reset

7-6	When BUCK2 controlled by SLP_SOIX_B, the power down sequence setting bit1-0	RW	00
	000-100:5 steps		
5-3	When BUCK3 controlled by SLP_SOIX_B, the power down sequence setting bit2-0	RW	000
	000-100:5 steps		
2-0	When BUCK1 controlled by SLP_SOIX_B, the power down sequence setting bit2-0	RW	000
	000-100:5 steps		

REG 9DH: Run time Sleep power down sequence 2

Default: 00H Reset: System reset

Table 10-87

7-5	When BUCK5 controlled by SLP_SOIX_B, the power down sequence setting bit2-0	RW	000
	000-100:5 steps		
4-2	When FLDO1 controlled by SLP_SOIX_B, the power down sequence setting bit2-0	RW	000
	000-100:5 steps		
1-0	Reserved		

REG 9EH: Power rail mode in Sleep state

Default: 00H

Reset: System reset

Table 10-88

Bit	Description	R/W	Default
7-5	Reserved		
4	When BUCK2 controlled by SLP_SOIX_B, power state in sleep mode:	RW	0
	0:off 1:Vsleep		
3	When BUCK3 controlled by SLP_SOIX_B, power state in sleep mode:	RW	0
	0:off 1:Vsleep		
2	When BUCK1 controlled by SLP_SOIX_B, power state in sleep mode:	RW	0
	0:off 1:Vsleep		
1	When BUCK5 controlled by SLP_SOIX_B, power state in sleep mode:	RW	0
	0:off 1:Vsleep		
0	When FLDO1 controlled by SLP_S0IX_B, power state in sleep mode:	RW	0
	0:off 1:Vsleep		

REG A0H: Real time data bit[11:4] for Battery voltage (BATSENSE)

Default: 00H Reset: System reset

Table 10-89

Bit	Description	R/W	Default
7-0	Real time data bit[11:4] for Battery voltage (BATSENSE)	R	00

REG A1H: Real time data bit[3:0] for Battery voltage (BATSENSE)

Default: 00H Reset: System reset

Table 10-90

Bit	Description	R/W	Default
7-4	Real time data bit[3:0] for Battery voltage (BATSENSE)	R	00
3-0	Reserved	R	00

REG B8H: Fuel Gauge Control

Default: E8H

Reset: power on reset

Bit	Description	R/W	Default
7	fuel gauge enable control(including OCV and coulomb meter)	RW	1
	0-Disable		
	1-Enable		
6	Coulomb meter enable control	RW	1
	0-Disable		
	1-Enable		
5	Battery maximum capacity calibration enable control	RW	1
	0-Disable		
	1-Enable		
4	Battery maximum capacity calibration status	R	0
	0: Not calibrating		
	1: Is calibrating		
3	OCV-SOC curve calibration enable control	RW	1
	0-Disable		

	1-Enable		
	Suggest set this bit as 0		
2	OCV-SOC curve calibration status	R	0
	0-Not calibrating		
	1-Is calibrating		
1-0	Reserved	RW	0

REG B9H: Battery capacity percentage for indication

Default: 64H

Reset: Power on reset

Table 10-92

Bit	Description	R/W	Default
7	Indicating if battery capacity percentage for indication is valid:	R	0
	0-Not valid		
	1-Is valid		
6-0	Battery capacity percentage for indication	R	64H

REG BAH: RDC 1

Default: 80H

Reset: Bit [7] & [4-0] reset is power on reset

Table 10-93

Bit	Description	R/W	Default
7	RDC calculation control; 0: disable; 1: enable	RW	1
6	RDC was right detected or not flag:	R	0
	1-Y		
	0-N		
5	RDC has detected or not during this power on time:	R	0
	1-Y		
	0-N		
4-0	RDC value HSB 5 bit	RW	00000

REG BBH: RDC 0

Default: 5DH

Reset: power on reset

Table 10-94

Bit	Description	R/W	Default
7-0	RDC value LSB 8bit	RW	5DH

REG BCH: OCV 1

Default: 00H

Reset: power on reset

Table 10-95

Bit	Description	R/W	Default
7-0	OCV HSB 8bit	R	00H

REG BDH: OCV0

Default: 00H

Reset: power on reset

Table 10-96

Bit	Descri	otion R/W	Default
7-4	Reserved		
3-0	OCV LSB 4bit	R	0000

REG EOH: Battery maximum capacity

Default: 00H

Reset: Power on reset

Table 10-97

Bit	Description	R/W	Default
7	Indicating if battery maximum capacity is valid:	R/W	0
	0-Not valid		
	1-Is valid		
6-0	battery maximum capacity bit[14:8]	RW	00H

REG E1H: Battery maximum capacity

Default: 00H

Table 10-98

E	Bit	Description	R/W	Default
7	7-0	battery maximum capacity bit[7:0](Unit: 1.456mAh)	RW	00H

REG E2H: Coulomb meter counter1

Default: 00H

Reset: Power on reset

Table 10-99

Bit	Description	R/W	Default
7	Indicating if coulomb meter counter is valid:	RW	0
	0-Not valid 1-Is valid		
6-0	Coulomb meter counter[14:8]	RW	00H

REG E3H: Coulomb meter counter2

Default: 00H

Reset: Power on reset

Table 10-100

Bit	Description	R/W	Default
7-0	Coulomb meter counter[7:0] (Unit: 1.456mAh)	RW	00H

REG E4H: OCV Percentage of battery capacity

Default: 64H

Reset: Power on reset

Table 10-101

Bit	Description	R/W	Default
7	Indicating if OCV percentage of battery capacity is valid	R	0
	0-Not valid		
	1-ls valid		
6-0	OCV percentage of battery capacity	R	64H

REG E5H: Coulomb meter percentage of battery capacity

Default: 64H

Table 10-102

Bit	Description	R/W	Default
7	Indicating if coulomb meter percentage of battery capacity is valid:	R	0
	0-Not valid 1-Is valid		
6-0	Coulomb meter percentage of battery capacity	R	64H

REG E6H: Battery capacity percentage warning level

Default: A0H

Reset: Power on reset

Table 10-103

Bit	Description	R/W	Default
7-4	Warning level 1: Warning threshold, 5-20%, 1% per step	RW	1010
3-0	Warning level 2: Shutting down threshold, 0-15%, 1% per step	RW	0000

REG E8H: Fuel gauge tuning control 0

Default: 00H

Reset: Power on reset

Table 10-104

Bit	Description	R/W	Default
7-3	Reserved		
2-0	Battery capacity percentage for indication update minimum interval	RW	0
	000-30s		
	001-60s		
	010-120s		
	011-164s		
	100-immediately update when changed		
	101-5s		
	110-10s		
	111-20s		

REG E9H: Fuel gauge tuning control 1

Default: 00H

Reset: Power on reset

Bit	Description	R/W	Default
7-6	OCV Percentage calibrate the Coulomb meter percentage, maximum time interval	RW	0
	00-60s		
	01-120s		
	10-15s		
	11-30s		Λ
5-3	Wait for the stability for charge when in RDC calculation	RW	0
	000-180s		
	001-240s		
	010-300s		
	011-600s		
	100-30s		
	101-60s		
	110-90s		
	111-120s		
2-0	Wait for the stability for discharge when in RDC calculation	RW	0
	000-180s		
	001-240s		
	010-300s		
	011-600s		
	100-30s		
	101-60s		
	110-90s		
	111-120s		

REG EAH: Fuel gauge tuning control 2

Default: 00H

Table 10-106

Bit	Description	R/W	Default
7-6	OCV Percentage Debounce setting(only when the change continuous the same	RW	0
	direction as more than N times, then the ocv percentage increase or decrease)N:		
	00-4		
	01-8		
	10-1		
	11-2		
5-4	Coulomb meter Percentage Debounce setting(only when the change continuous the	RW	0

	Titile Optimized for Matti Core riigii	,	
	same direction as more than N times, then the ocv percentage increase or decrease)N:		
	00-4		
	01-8		
	10-1		
	11-2		
3	Battery maximum capacity calibration start condition:	RW	0
	0-OCV percentage < (REG E6H[3:0] + 3)		
	1-OCV percentage < (REG E6H[3:0] + 6)		
2	Battery maximum capacity calibration end condition 0	RW	0
	0-OCV percentage ≥ 95%		
	1-OCV percentage = 100%		
1	Battery maximum capacity calibration end condition 1	RW	0
	0-wait for charge finished		
	1-do not wait for charge finished		
0	Battery maximum capacity calibration end condition 2	RW	0
	(wait Nms for the charge finished indication signal after REG 01H[6] clear to 0,N:		
	0-68 1-120		

REG EBH: Fuel gauge tuning control 3

Default: 00H

Table 10-107

Bit	Description	R/W	Default
7	When charge status bit REG 01H[6] = 1,the percentage of indication can be decrease or	RW	0
	not		
	0-decrease enable		
	1-decrease disable		
6-4	When REG 01H[6] = 1, percentage of indication decrease hysteresis(N) setting	RW	0
	000-4%		
	001-5%		
	010-6%		
	011-7%		
	100-0%		
	101-1%		
	110-2%		
	111-3%		

3	Calculation RDC current condition setting	RW	0
	0-≥300mA		
	1-≥150mA		
2-0	Calibrate RDC percentage changed threshold setting	RW	0
	000-4%		
	001-5%		
	010-6%		
	011-7%		
	100-0%		
	101-1%		
	110-2%		
	111-3%		
	calibration: ΔOCVPCT > N		

REG ECH: Fuel gauge tuning control 4

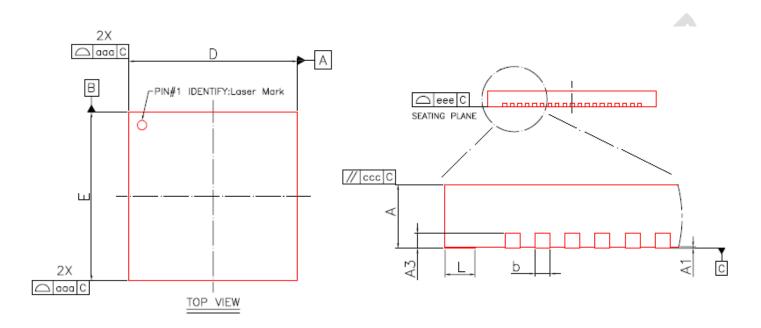
Default: 00H

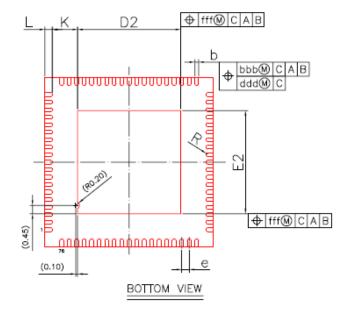
Table 10-108

Bit	Description	R/W	Default
7	ADC current data include offset0 or not(For debug)	RW	0
	0-Enable		
	1-Disable		
6	ADC current data offset0 smooth control(For debug)	RW	0
	0-Enable		
	1-Disable		
5	RDC re-calculate when PMIC power on for power off	RW	0
	0-Disable		
	1-Enable		
4-3	The minimum battery voltage for RDC calculation	RW	00
	00-3.5V		
	01-3.6V		
	10-3.7V		
	11-3.4V		
2-0	Coulomb counter calibration threshold, relative with REG_E6_[3:0]	RW	000
	000-REG_E6H[3:0]+7(default)		
	001-REG_E6H[3:0]+8		
	010-REG_E6H[3:0]+9		

	011-REG_E6H[3:0]+10		Ì
	100-REG_E6H[3:0]+3		ì
	101-REG_E6H[3:0]+4		ì
	110-REG_E6H[3:0]+5		Ì
	111-REG_E6H[3:0]+6		ì

REG EDH: Fuel gauge tuning control 5


Default: 00H


Table 10-109

Bit	Description	R/W	Default
7	OCV percentage relative with the charge/discharge rate control	RW	0
	0-Disable		
	1-Enable		
6	Update time when rate > 0.5C	RW	0
	0-30S		
	1-15S		
5-4	Update time when rate < 0.5C and rate > 0.1C	RW	00
	00-60S		
	01-75S		
	10-30S		
	11-45S		
3-2	Update time when rate < 0.1C	RW	00
	00-120S		
	01-180S		
	10-240S		
	11-60S		
1-0	Fixed update time	RW	00
	00-30S		
	01-45S		
	10-60S		
V	11-15S		

11 Package

AXP288 is available in 9mm x 9mm 76-pin QFN package

	Dimension in mm		Dimension in inch			
Symbol	MIN	NOM	MAX	MIN	NOM	MAX
A	0.80	0.85	0.90	0.031	0.033	0.035
A1	0.00	0.02	0.05	0.000	0.001	0.002
A3		0.20 REF		0.008 REF		
ь	0.15	0.20	0.25	0.006	0.008	0.010
D/E	8.90	9.00	9.10	0.350	0.354	0.358
D2	5.40	5.50	5.60	0.213	0.217	0.220
E2	5.40	5.50	5.60	0.213	0.217	0.220
е		0.40 BSC)	0.016 BSC		
L	0.30	0.40	0.50	0.012	0.016	0.020
R	0.075		0.125	0.003		0.005
K	0.20			0.008		
aaa		0.10		0.004		
bbb	0.07		0.003			
ccc	0.10			0.004		
ddd	0.05			0.002		
eee	0.08			0.003		
fff	0.10			0.004		

Figure 11-1

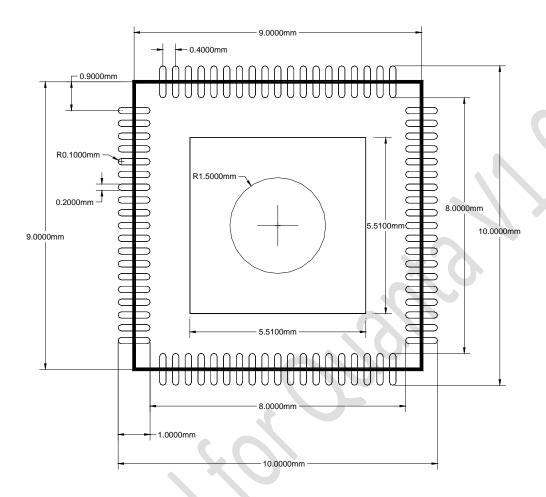


Figure 11-2

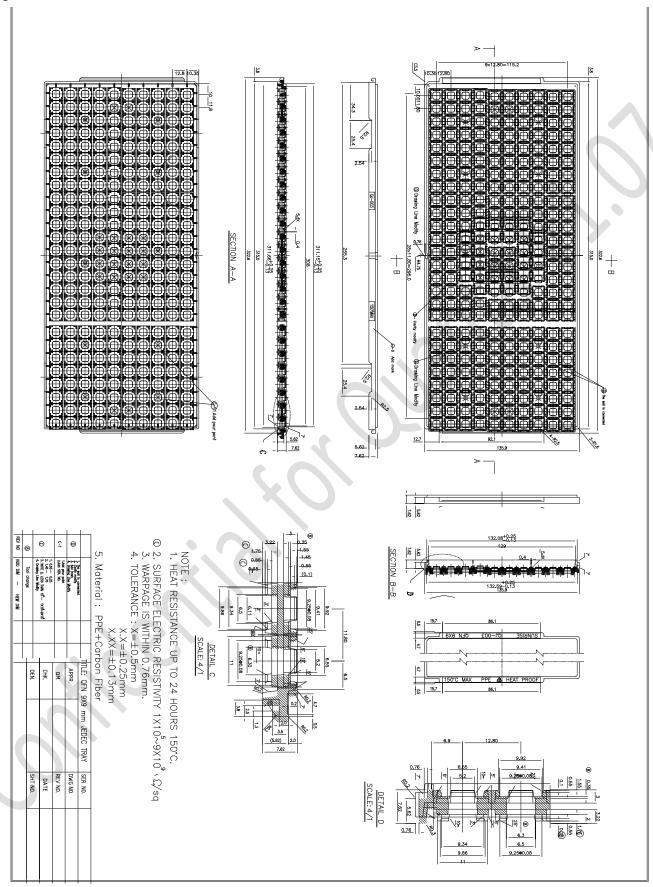


Figure 11-3

Order Information

Table 11

Туре	Quantity	Part Number
Troy	260pcs/Tray	AXP288/AXP288C/AXP288D
Tray	10Trays/package	AAF 200/AAF 200C/AAF 200D